{"title":"The one-sided lipschitz condition in the follow-the-leader approximation of scalar conservation laws","authors":"M. D. Francesco, Graziano Stivaletta","doi":"10.1142/s0219891622500205","DOIUrl":null,"url":null,"abstract":"We consider the follow-the-leader particle approximation scheme for a [Formula: see text] scalar conservation law with non-negative compactly supported [Formula: see text] initial datum and with a [Formula: see text] concave flux, which is known to provide convergence towards the entropy solution [Formula: see text] to the corresponding Cauchy problem. We provide two novel contributions to this theory. First, we prove that the one-sided Lipschitz condition satisfied by the approximate density [Formula: see text] is a “discrete version of an entropy condition”; more precisely, under fairly general assumptions on [Formula: see text] (which imply concavity of [Formula: see text]) we prove that the continuum version [Formula: see text] of said condition allows to select a unique weak solution, despite [Formula: see text] is apparently weaker than the classical Oleinik–Hoff one-sided Lipschitz condition [Formula: see text]. Said result relies on an improved version of Hoff’s uniqueness. A byproduct of it is that the entropy condition is encoded in the particle scheme prior to the many-particle limit, which was never proven before. Second, we prove that in case [Formula: see text] the one-sided Lipschitz condition can be improved to a discrete version of the classical (and “sharp”) Oleinik–Hoff condition. In order to make the paper self-contained, we provide proofs (in some cases “alternative” ones) of all steps of the convergence of the particle scheme.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hyperbolic Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219891622500205","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2
Abstract
We consider the follow-the-leader particle approximation scheme for a [Formula: see text] scalar conservation law with non-negative compactly supported [Formula: see text] initial datum and with a [Formula: see text] concave flux, which is known to provide convergence towards the entropy solution [Formula: see text] to the corresponding Cauchy problem. We provide two novel contributions to this theory. First, we prove that the one-sided Lipschitz condition satisfied by the approximate density [Formula: see text] is a “discrete version of an entropy condition”; more precisely, under fairly general assumptions on [Formula: see text] (which imply concavity of [Formula: see text]) we prove that the continuum version [Formula: see text] of said condition allows to select a unique weak solution, despite [Formula: see text] is apparently weaker than the classical Oleinik–Hoff one-sided Lipschitz condition [Formula: see text]. Said result relies on an improved version of Hoff’s uniqueness. A byproduct of it is that the entropy condition is encoded in the particle scheme prior to the many-particle limit, which was never proven before. Second, we prove that in case [Formula: see text] the one-sided Lipschitz condition can be improved to a discrete version of the classical (and “sharp”) Oleinik–Hoff condition. In order to make the paper self-contained, we provide proofs (in some cases “alternative” ones) of all steps of the convergence of the particle scheme.
期刊介绍:
This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in:
Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions.
Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc.
Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations.
Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc.
General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations.
Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.