A strong law of large numbers for positive random variables

IF 0.6 Q3 MATHEMATICS
I. Karatzas, W. Schachermayer
{"title":"A strong law of large numbers for positive random variables","authors":"I. Karatzas, W. Schachermayer","doi":"10.1215/00192082-10817817","DOIUrl":null,"url":null,"abstract":"In the spirit of the famous KOML\\'OS (1967) theorem, every sequence of nonnegative, measurable functions $\\{ f_n \\}_{n \\in \\N}$ on a probability space, contains a subsequence which - along with all its subsequences - converges a.e. in CES\\`ARO mean to some measurable $f_* : \\Omega \\to [0, \\infty]$. This result of VON WEIZS\\\"ACKER (2004) is proved here using a new methodology and elementary tools; these sharpen also a theorem of DELBAEN&SCHACHERMAYER (1994), replacing general convex combinations by CES\\`ARO means.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-10817817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In the spirit of the famous KOML\'OS (1967) theorem, every sequence of nonnegative, measurable functions $\{ f_n \}_{n \in \N}$ on a probability space, contains a subsequence which - along with all its subsequences - converges a.e. in CES\`ARO mean to some measurable $f_* : \Omega \to [0, \infty]$. This result of VON WEIZS\"ACKER (2004) is proved here using a new methodology and elementary tools; these sharpen also a theorem of DELBAEN&SCHACHERMAYER (1994), replacing general convex combinations by CES\`ARO means.
正随机变量的大数定律
根据著名的KOML(1967)定理的精神,概率空间上的每一个非负可测函数$\{f_n}_{n\In\n}$序列都包含一个子序列,该子序列及其所有子序列收敛,例如,在CES中,ARO均值为某个可测$f_*:\ Omega \ to[0,\ infty]$。本文用一种新的方法和初等工具证明了VON WEIZS“ACKER(2004)的这一结果,这些方法和工具也强化了DELBAEN和SCHACHERMAYER(1994)的一个定理,用CES“ARO均值代替了一般的凸组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信