Masih Hanifi, H. Chibane, R. Houssin, D. Cavallucci, Naser Ghannad
{"title":"Artificial intelligence methods for improving the inventive design process, application in lattice structure case study","authors":"Masih Hanifi, H. Chibane, R. Houssin, D. Cavallucci, Naser Ghannad","doi":"10.1017/S0890060422000051","DOIUrl":null,"url":null,"abstract":"Abstract Nowadays, firms are constantly looking for methodological approaches that help them to decrease the time needed for the innovation process. Among these approaches, it is worth mentioning the TRIZ-based frameworks such as the Inventive Design Methodology (IDM), where the Problem Graph method is used to formulate a problem. However, the application of IDM is time-consuming due to the construction of a complete map to clarify a problem situation. Therefore, the Inverse Problem Graph (IPG) method has been introduced within the IDM framework to enhance its agility. Nevertheless, the manual gathering of essential information, including parameters and concepts, requires effort and time. This paper integrates the neural network doc2vec and machine learning algorithms as Artificial Intelligence methods into a graphical method inspired by the IPG process. This integration can facilitate and accelerate the development of inventive solutions by extracting parameters and concepts in the inventive design process. The method has been applied to develop a new lattice structure solution in the material field.","PeriodicalId":50951,"journal":{"name":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0890060422000051","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Nowadays, firms are constantly looking for methodological approaches that help them to decrease the time needed for the innovation process. Among these approaches, it is worth mentioning the TRIZ-based frameworks such as the Inventive Design Methodology (IDM), where the Problem Graph method is used to formulate a problem. However, the application of IDM is time-consuming due to the construction of a complete map to clarify a problem situation. Therefore, the Inverse Problem Graph (IPG) method has been introduced within the IDM framework to enhance its agility. Nevertheless, the manual gathering of essential information, including parameters and concepts, requires effort and time. This paper integrates the neural network doc2vec and machine learning algorithms as Artificial Intelligence methods into a graphical method inspired by the IPG process. This integration can facilitate and accelerate the development of inventive solutions by extracting parameters and concepts in the inventive design process. The method has been applied to develop a new lattice structure solution in the material field.
期刊介绍:
The journal publishes original articles about significant AI theory and applications based on the most up-to-date research in all branches and phases of engineering. Suitable topics include: analysis and evaluation; selection; configuration and design; manufacturing and assembly; and concurrent engineering. Specifically, the journal is interested in the use of AI in planning, design, analysis, simulation, qualitative reasoning, spatial reasoning and graphics, manufacturing, assembly, process planning, scheduling, numerical analysis, optimization, distributed systems, multi-agent applications, cooperation, cognitive modeling, learning and creativity. AI EDAM is also interested in original, major applications of state-of-the-art knowledge-based techniques to important engineering problems.