Degree sum conditions for hamiltonian index

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Ze-meng Liu, Li-ming Xiong
{"title":"Degree sum conditions for hamiltonian index","authors":"Ze-meng Liu,&nbsp;Li-ming Xiong","doi":"10.1007/s11766-021-3885-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this note, we show a sharp lower bound of <span>\\(\\min \\left\\{{\\sum\\nolimits_{i = 1}^k {{d_G}({u_i}):{u_1}{u_2} \\ldots {u_k}}} \\right.\\)</span> is a path of (2-)connected <i>G</i> on its order such that (<i>k</i>-1)-iterated line graphs <i>L</i><sup><i>k</i></sup><sup>−1</sup>(<i>G</i>) are hamiltonian.</p></div>","PeriodicalId":67336,"journal":{"name":"Applied Mathematics-a Journal Of Chinese Universities Series B","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11766-021-3885-4.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics-a Journal Of Chinese Universities Series B","FirstCategoryId":"1089","ListUrlMain":"https://link.springer.com/article/10.1007/s11766-021-3885-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

In this note, we show a sharp lower bound of \(\min \left\{{\sum\nolimits_{i = 1}^k {{d_G}({u_i}):{u_1}{u_2} \ldots {u_k}}} \right.\) is a path of (2-)connected G on its order such that (k-1)-iterated line graphs Lk−1(G) are hamiltonian.

哈密顿指标的度和条件
在这篇笔记中,我们证明了\(\min \left\{{\sum\nolimits_{i = 1}^k {{d_G}({u_i}):{u_1}{u_2} \ldots {u_k}}} \right.\)的一个明显的下界是(2-)连通G在其阶上的路径,使得(k-1)次迭代的线形图Lk−1(G)是哈密顿的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
10.00%
发文量
453
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信