{"title":"2-Limits and 2-Terminal Objects are too Different","authors":"tslil clingman, Lyne Moser","doi":"10.1007/s10485-022-09691-z","DOIUrl":null,"url":null,"abstract":"<div><p>In ordinary category theory, limits are known to be equivalent to terminal objects in the slice category of cones. In this paper, we prove that the 2-categorical analogues of this theorem relating 2-limits and 2-terminal objects in the various choices of slice 2-categories of 2-cones are false. Furthermore we show that, even when weakening the 2-cones to pseudo- or lax-natural transformations, or considering bi-type limits and bi-terminal objects, there is still no such correspondence.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-022-09691-z.pdf","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-022-09691-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11
Abstract
In ordinary category theory, limits are known to be equivalent to terminal objects in the slice category of cones. In this paper, we prove that the 2-categorical analogues of this theorem relating 2-limits and 2-terminal objects in the various choices of slice 2-categories of 2-cones are false. Furthermore we show that, even when weakening the 2-cones to pseudo- or lax-natural transformations, or considering bi-type limits and bi-terminal objects, there is still no such correspondence.
期刊介绍:
Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant.
Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.