Synthesis and deposition of Silver nanostructures on the silica microsphere by laser-assisted photochemical method for SERS applications

IF 0.5 Q4 OPTICS
T. B. Pham, T. Nguyen, T. Hoang, H. Bui, Thanh Son Pham, V. D. Nguyen, Hoi V. Pham
{"title":"Synthesis and deposition of Silver nanostructures on the silica microsphere by laser-assisted photochemical method for SERS applications","authors":"T. B. Pham, T. Nguyen, T. Hoang, H. Bui, Thanh Son Pham, V. D. Nguyen, Hoi V. Pham","doi":"10.4302/PLP.V12I4.1049","DOIUrl":null,"url":null,"abstract":"The homogeneous distribution of nano-metallic structures on the surface-enhanced Raman (SERS) substrates plays an important factor for high-sensitive Raman scattering measurement. In this paper, we present a low-cost laser-assisted photochemical method for making a SERS probe based on silver nanostructures, which are one-timely synthesized nano-silver structures, homogeneously deposited on silica microsphere surfaces. Achieved SERS-activity substrates with a homogeneous distribution of Ag-nanostructures are verified by a mapping technique on the surface of Ag-coated microsphere for the detection of low concentration of Rhodamine 6G in aqueous solutions in a range of 10-4-10-9M. The obtained results show that a SERS microsphere probe has a good repetition of SERS-activity in any space of sensing area, and large potential for application in a biochemical sensing technique. Full Text: PDF ReferencesY. Chen et al., \"Interfacial reactions in lithium batteries\", J. Phys. D: Appl. Phys. 50, 02510 (2017). CrossRef T.B. Pham, H. Bui, H.T. Le, V.H. Pham, \"Characteristics of the Fiber Laser Sensor System Based on Etched-Bragg Grating Sensing Probe for Determination of the Low Nitrate Concentration in Water\", Sensors 17, 0007 (2017). CrossRef X. Wang, O.S. Wolfbeis, \"Fiber-Optic Chemical Sensors and Biosensors (2013–2015)\", Anal. Chem. 88, 203 (2016). CrossRef R. Wang, K. Kim, N. Choi, X. Wang, J. Lee, J.H. Joen, G. Rhie, J. Choo, \"Highly sensitive detection of high-risk bacterial pathogens using SERS-based lateral flow assay strips\", Sens. Actuators B-Chem. 270, 72 (2018). CrossRef H. Zhang et al., \"Determination of Pesticides by Surface-Enhanced Raman Spectroscopy on Gold-Nanoparticle-Modified Polymethacrylate\", Anal. Let. 49, 2268 (2016). CrossRef L. Chen, H. Yan, X. Xue, D. Jiang, Y. Cai, D. Liang, Y.M. Jung, X.X. Han, B. Zhao, \"Surface-Enhanced Raman Scattering (SERS) Active Gold Nanoparticles Decorated on a Porous Polymer Filter\", Appl. Spectrosc. 71, 1543 (2017). CrossRef A. Matikainen, T. Nuutinen, P. Vahimaa, S. Honkanen, \"A solution to the fabrication and tarnishing problems of surface-enhanced Raman spectroscopy (SERS) fiber probes\", Sci. Rep. 5, 8320 (2015). CrossRef J. Zhang, S. Chen, T. Gong, X. Zhang, Y. Zhu, \"Tapered Fiber Probe Modified by Ag Nanoparticles for SERS Detection\", Plasm. 11, 743 (2016). CrossRef W. Xu et al., \"A Dual-Butterfly Structure Gyroscope\", Sensors 17, 467 (2017). CrossRef K. Setoura, S. Ito, M. Yamada, H. Yamauchi, H. Miyasaka, \"Fabrication of silver nanoparticles from silver salt aqueous solution at water-glass interface by visible CW laser irradiation without reducing reagents\", J. Photochem. Photobio. A: Chem. 344, 168 (2017). CrossRef K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, C. Gao, \"Porous Au–Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis\", Nano Lett. 16, 3675 (2016). CrossRef Z. Huang, X. Lei, Y. Liu, Z. Wang, X. Wang, Z. Wang, Q. Mao, G. Meng, \"Tapered Optical Fiber Probe Assembled with Plasmonic Nanostructures for Surface-Enhanced Raman Scattering Application\", ACS Appl. Mater. Interfaces 7, 17247 (2015). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Letters of Poland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4302/PLP.V12I4.1049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The homogeneous distribution of nano-metallic structures on the surface-enhanced Raman (SERS) substrates plays an important factor for high-sensitive Raman scattering measurement. In this paper, we present a low-cost laser-assisted photochemical method for making a SERS probe based on silver nanostructures, which are one-timely synthesized nano-silver structures, homogeneously deposited on silica microsphere surfaces. Achieved SERS-activity substrates with a homogeneous distribution of Ag-nanostructures are verified by a mapping technique on the surface of Ag-coated microsphere for the detection of low concentration of Rhodamine 6G in aqueous solutions in a range of 10-4-10-9M. The obtained results show that a SERS microsphere probe has a good repetition of SERS-activity in any space of sensing area, and large potential for application in a biochemical sensing technique. Full Text: PDF ReferencesY. Chen et al., "Interfacial reactions in lithium batteries", J. Phys. D: Appl. Phys. 50, 02510 (2017). CrossRef T.B. Pham, H. Bui, H.T. Le, V.H. Pham, "Characteristics of the Fiber Laser Sensor System Based on Etched-Bragg Grating Sensing Probe for Determination of the Low Nitrate Concentration in Water", Sensors 17, 0007 (2017). CrossRef X. Wang, O.S. Wolfbeis, "Fiber-Optic Chemical Sensors and Biosensors (2013–2015)", Anal. Chem. 88, 203 (2016). CrossRef R. Wang, K. Kim, N. Choi, X. Wang, J. Lee, J.H. Joen, G. Rhie, J. Choo, "Highly sensitive detection of high-risk bacterial pathogens using SERS-based lateral flow assay strips", Sens. Actuators B-Chem. 270, 72 (2018). CrossRef H. Zhang et al., "Determination of Pesticides by Surface-Enhanced Raman Spectroscopy on Gold-Nanoparticle-Modified Polymethacrylate", Anal. Let. 49, 2268 (2016). CrossRef L. Chen, H. Yan, X. Xue, D. Jiang, Y. Cai, D. Liang, Y.M. Jung, X.X. Han, B. Zhao, "Surface-Enhanced Raman Scattering (SERS) Active Gold Nanoparticles Decorated on a Porous Polymer Filter", Appl. Spectrosc. 71, 1543 (2017). CrossRef A. Matikainen, T. Nuutinen, P. Vahimaa, S. Honkanen, "A solution to the fabrication and tarnishing problems of surface-enhanced Raman spectroscopy (SERS) fiber probes", Sci. Rep. 5, 8320 (2015). CrossRef J. Zhang, S. Chen, T. Gong, X. Zhang, Y. Zhu, "Tapered Fiber Probe Modified by Ag Nanoparticles for SERS Detection", Plasm. 11, 743 (2016). CrossRef W. Xu et al., "A Dual-Butterfly Structure Gyroscope", Sensors 17, 467 (2017). CrossRef K. Setoura, S. Ito, M. Yamada, H. Yamauchi, H. Miyasaka, "Fabrication of silver nanoparticles from silver salt aqueous solution at water-glass interface by visible CW laser irradiation without reducing reagents", J. Photochem. Photobio. A: Chem. 344, 168 (2017). CrossRef K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, C. Gao, "Porous Au–Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis", Nano Lett. 16, 3675 (2016). CrossRef Z. Huang, X. Lei, Y. Liu, Z. Wang, X. Wang, Z. Wang, Q. Mao, G. Meng, "Tapered Optical Fiber Probe Assembled with Plasmonic Nanostructures for Surface-Enhanced Raman Scattering Application", ACS Appl. Mater. Interfaces 7, 17247 (2015). CrossRef
激光辅助光化学法在二氧化硅微球上合成和沉积银纳米结构用于SERS应用
纳米金属结构在表面增强拉曼(SERS)衬底上的均匀分布是实现高灵敏度拉曼散射测量的重要因素。在本文中,我们提出了一种低成本的激光辅助光化学方法来制作基于银纳米结构的SERS探针,银纳米结构是一次性合成的纳米银结构,均匀沉积在硅微球表面。通过在银包覆微球表面的测绘技术验证了具有均匀分布的银纳米结构的sers活性底物,用于检测水溶液中10-4-10-9M范围内的低浓度罗丹明6G。结果表明,SERS微球探针在传感区域的任何空间都具有良好的SERS活性重复性,在生化传感技术中具有很大的应用潜力。全文:PDF参考。Chen et al.,“锂电池的界面反应”,物理学报。D::。物理学报,50,02510(2017)。引用本文:范廷彬,裴辉,李洪涛,范卫辉,“基于蚀刻光栅传感探头的光纤激光传感系统在水中低硝酸盐浓度测定中的应用”,传感器,17(07)(2017)。Wang X. Wang, O.S. Wolfbeis,“光纤化学传感器与生物传感器(2013-2015)”,vol . 3, no . 1。化学,88,203(2016)。王晓明,王晓明,王晓明,李俊杰,李俊辉,王晓明,周俊杰,“基于sers的横向流动试验试纸的高灵敏度检测”,中国生物医学工程学报。270,72(2018)。CrossRef H. Zhang et al.,“金纳米颗粒修饰聚甲基丙烯酸酯表面增强拉曼光谱测定农药”,vol . 3;Let. 49, 2268(2016)。【交叉参考】陈丽丽,闫华,薛晓霞,姜东,蔡勇,梁东,钟彦明,韩晓霞,赵斌,“表面增强拉曼散射(SERS)活性金纳米粒子在多孔聚合物过滤器上的修饰”,应用科学,光谱学学报,2011,43(2017)。CrossRef A. Matikainen, T. Nuutinen, P. Vahimaa, S. Honkanen,“表面增强拉曼光谱(SERS)光纤探针的制备和抛光问题的解决方案”,Sci。众议员5,8320(2015)。[CrossRef]张军,陈生,龚彤,张晓霞,朱勇,“纳米Ag修饰的锥形纤维探针用于SERS检测”,高分子学报,11,743(2016)。CrossRef徐伟等,“双蝴蝶结构陀螺仪”,传感器,17,467(2017)。[CrossRef]王晓明,王晓明,王晓明,“用连续波激光辐照制备银纳米粒子的研究进展”,光化学学报。Photobio。[j] .化学学报,2016,33(5)。引用本文:刘凯,白艳,张磊,杨志强,范琪,郑宏,殷艳,高春春,“高密度高可达热点的Au-Ag纳米微球SERS分析”,纳米材料学报,16,3675(2016)。引用本文:黄志强,雷晓明,刘勇,王志强,王晓明,王志强,毛强,王志强,“基于等离子体纳米结构的锥形光纤探针在表面增强拉曼散射中的应用”,中国科学院学报(自然科学版)板牙。接口7,17247(2015)。CrossRef
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信