Celeste Q. Rossi, Luiz A. da S. R. Pinto, Octávio V. T. de Moura, A. Loss, M. G. Pereira
{"title":"Soil organic matter in biogenic, intermediate and physicogenic aggregates under agroecological management","authors":"Celeste Q. Rossi, Luiz A. da S. R. Pinto, Octávio V. T. de Moura, A. Loss, M. G. Pereira","doi":"10.1590/1983-21252023v36n118rc","DOIUrl":null,"url":null,"abstract":"ABSTRACT Agroecological management can favor the improvement of soil attributes, especially soil organic matter (SOM) and soil aggregation. The objective of the study was to quantify the carbon contents of the humic and oxidizable fractions of SOM of aggregates from different origins from agroecological management systems. Five experimental areas located in the Integrated Agroecological Production System were evaluated: AFS – Agroforestry System; C-SUN – Coffee in full sun; C-SHA – Shaded coffee; AL-FLE – Cultivation in alleys of Flemingia macrophylla with green beans; and NT – No-tillage. The aggregates were separated, identified, and classified as to their origin or formation pathways into biogenic, intermediate, and physicogenic. The carbon contents of the humic fractions fulvic acid (C-FAF), humic acid (C-HAF) and humin (C-HUMF); and oxidizable fractions (F1 and F2, labile; and F3 and F4, recalcitrant) of SOM were determined. The greatest variations in the carbon values of the humic fractions were observed in the aggregates of the AFS, C-SUN and C-SHA systems. In relation to C-HUMF, the highest contents of this fraction were quantified in the biogenic and intermediate aggregates of the C-SUN, C-SHA and AL-FLE systems. The carbon contents of the oxidizable fractions of SOM showed variability between the management systems, mainly for the F1, F2 and F3 fractions in the aggregates under C-SUN and C-SHA. The C-SUN system showed a higher proportion of more humified and recalcitrant fractions of SOM when compared to the C-SHA system. The management practices maids in the agroecological systems of C-SHA, C-SUN and AFS promoted improvements in soil quality.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/1983-21252023v36n118rc","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
ABSTRACT Agroecological management can favor the improvement of soil attributes, especially soil organic matter (SOM) and soil aggregation. The objective of the study was to quantify the carbon contents of the humic and oxidizable fractions of SOM of aggregates from different origins from agroecological management systems. Five experimental areas located in the Integrated Agroecological Production System were evaluated: AFS – Agroforestry System; C-SUN – Coffee in full sun; C-SHA – Shaded coffee; AL-FLE – Cultivation in alleys of Flemingia macrophylla with green beans; and NT – No-tillage. The aggregates were separated, identified, and classified as to their origin or formation pathways into biogenic, intermediate, and physicogenic. The carbon contents of the humic fractions fulvic acid (C-FAF), humic acid (C-HAF) and humin (C-HUMF); and oxidizable fractions (F1 and F2, labile; and F3 and F4, recalcitrant) of SOM were determined. The greatest variations in the carbon values of the humic fractions were observed in the aggregates of the AFS, C-SUN and C-SHA systems. In relation to C-HUMF, the highest contents of this fraction were quantified in the biogenic and intermediate aggregates of the C-SUN, C-SHA and AL-FLE systems. The carbon contents of the oxidizable fractions of SOM showed variability between the management systems, mainly for the F1, F2 and F3 fractions in the aggregates under C-SUN and C-SHA. The C-SUN system showed a higher proportion of more humified and recalcitrant fractions of SOM when compared to the C-SHA system. The management practices maids in the agroecological systems of C-SHA, C-SUN and AFS promoted improvements in soil quality.