{"title":"Complex Linear Differential Equations with Solutions in Dirichlet–Morrey Spaces","authors":"Y. Sun, B. Liu, J. L. Liu","doi":"10.1007/s10476-023-0205-7","DOIUrl":null,"url":null,"abstract":"<div><p>The <i>n</i>th derivative criterion for functions belonging to the Dirichlet–Morrey space <span>\\({\\cal D}_p^\\lambda \\)</span> is given in this paper. Furthermore, two sufficient conditions for coefficients of the complex linear differential equation </p><div><div><span>$${f^{\\left( n \\right)}} + {A_{n - 1}}\\left( z \\right){f^{\\left( {n - 1} \\right)}} + \\cdots + {A_1}\\left( z \\right){f^\\prime } + {A_0}\\left( z \\right)f = {A_n}\\left( z \\right)$$</span></div></div><p> are obtained such that all solutions belong to <span>\\({\\cal D}_p^\\lambda \\)</span>, where <i>A</i><sub><i>j</i></sub>(<i>z</i>) are analytic functions in the unit disc, <i>j</i> = 0,…,<i>n</i>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0205-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The nth derivative criterion for functions belonging to the Dirichlet–Morrey space \({\cal D}_p^\lambda \) is given in this paper. Furthermore, two sufficient conditions for coefficients of the complex linear differential equation
$${f^{\left( n \right)}} + {A_{n - 1}}\left( z \right){f^{\left( {n - 1} \right)}} + \cdots + {A_1}\left( z \right){f^\prime } + {A_0}\left( z \right)f = {A_n}\left( z \right)$$
are obtained such that all solutions belong to \({\cal D}_p^\lambda \), where Aj(z) are analytic functions in the unit disc, j = 0,…,n.