Complex Linear Differential Equations with Solutions in Dirichlet–Morrey Spaces

Pub Date : 2023-02-08 DOI:10.1007/s10476-023-0205-7
Y. Sun, B. Liu, J. L. Liu
{"title":"Complex Linear Differential Equations with Solutions in Dirichlet–Morrey Spaces","authors":"Y. Sun,&nbsp;B. Liu,&nbsp;J. L. Liu","doi":"10.1007/s10476-023-0205-7","DOIUrl":null,"url":null,"abstract":"<div><p>The <i>n</i>th derivative criterion for functions belonging to the Dirichlet–Morrey space <span>\\({\\cal D}_p^\\lambda \\)</span> is given in this paper. Furthermore, two sufficient conditions for coefficients of the complex linear differential equation </p><div><div><span>$${f^{\\left( n \\right)}} + {A_{n - 1}}\\left( z \\right){f^{\\left( {n - 1} \\right)}} + \\cdots + {A_1}\\left( z \\right){f^\\prime } + {A_0}\\left( z \\right)f = {A_n}\\left( z \\right)$$</span></div></div><p> are obtained such that all solutions belong to <span>\\({\\cal D}_p^\\lambda \\)</span>, where <i>A</i><sub><i>j</i></sub>(<i>z</i>) are analytic functions in the unit disc, <i>j</i> = 0,…,<i>n</i>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0205-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The nth derivative criterion for functions belonging to the Dirichlet–Morrey space \({\cal D}_p^\lambda \) is given in this paper. Furthermore, two sufficient conditions for coefficients of the complex linear differential equation

$${f^{\left( n \right)}} + {A_{n - 1}}\left( z \right){f^{\left( {n - 1} \right)}} + \cdots + {A_1}\left( z \right){f^\prime } + {A_0}\left( z \right)f = {A_n}\left( z \right)$$

are obtained such that all solutions belong to \({\cal D}_p^\lambda \), where Aj(z) are analytic functions in the unit disc, j = 0,…,n.

分享
查看原文
Dirichlet-Morrey空间中具有解的复线性微分方程
本文给出了Dirichlet–Morrey空间中函数的n阶导数准则。此外,还得到了复线性微分方程$${f^{\left(n\right)}+{A_{n-1}}\left(z\right){f^{\left({n-1}\right))}+\cdots+{A_1}\left(z\right){f ^\prime}+}A_0}\lif={A_n}\left,其中Aj(z)是单位盘中的解析函数,j=0,…,n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信