New Pexiderizations of Drygas’ Functional Equation on Abelian Semigroups

IF 0.4 Q4 MATHEMATICS
Y. Aissi, D. Zeglami
{"title":"New Pexiderizations of Drygas’ Functional Equation on Abelian Semigroups","authors":"Y. Aissi, D. Zeglami","doi":"10.2478/amsil-2023-0015","DOIUrl":null,"url":null,"abstract":"Abstract Let (S, +) be an abelian semigroup, let (H, +) be an abelian group which is uniquely 2-divisible, and let ϕ be an endomorphism of S. We find the solutions f, h : S → H of each of the functional equations f(x+y)+f(x+ϕ(y))=h(x)+f(y)+f∘ϕ(y), x,y∈S,f(x+y)+f(x+ϕ(y))=h(x)+2f(y), x,y∈S, \\matrix{ {f\\left( {x + y} \\right) + f\\left( {x + \\varphi \\left( y \\right)} \\right) = h\\left( x \\right) + f\\left( y \\right) + f \\circ \\varphi \\left( y \\right),\\,x,y \\in S,} \\hfill \\cr {f\\left( {x + y} \\right) + f\\left( {x + \\varphi \\left( y \\right)} \\right) = h\\left( x \\right) + 2f\\left( y \\right),\\,x,y \\in S,} \\hfill \\cr } in terms of additive and bi-additive maps. Moreover, as applications, we determine the solutions of some related functional equations.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2023-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let (S, +) be an abelian semigroup, let (H, +) be an abelian group which is uniquely 2-divisible, and let ϕ be an endomorphism of S. We find the solutions f, h : S → H of each of the functional equations f(x+y)+f(x+ϕ(y))=h(x)+f(y)+f∘ϕ(y), x,y∈S,f(x+y)+f(x+ϕ(y))=h(x)+2f(y), x,y∈S, \matrix{ {f\left( {x + y} \right) + f\left( {x + \varphi \left( y \right)} \right) = h\left( x \right) + f\left( y \right) + f \circ \varphi \left( y \right),\,x,y \in S,} \hfill \cr {f\left( {x + y} \right) + f\left( {x + \varphi \left( y \right)} \right) = h\left( x \right) + 2f\left( y \right),\,x,y \in S,} \hfill \cr } in terms of additive and bi-additive maps. Moreover, as applications, we determine the solutions of some related functional equations.
Drygas函数方程在Abel半群上的新氧化
摘要设(S,+)是一个阿贝尔半群,设(H,+)为唯一2-可见的阿贝尔群,设Γ为S的自同态→ 函数方程f(x+y)+f(x+ξ(y))=H(x)+f, x、 y∈S,f(x+y)+f(x+ξ(y))=h(x)+2f(y), x、 y∈S,\矩阵{{f\left({x+y}\right)+f\left({x+\varphi\left(y\right)}\right)=h\left(x\right)+f\ left(y\ right)+f \ circ\varphi\ left(y \ right),\,x,y\在S中,}\hfill\cr,\,x,y\在S中,}\hfill\cr}在加性映射和双加性映射方面。此外,作为应用,我们确定了一些相关函数方程的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信