{"title":"New Pexiderizations of Drygas’ Functional Equation on Abelian Semigroups","authors":"Y. Aissi, D. Zeglami","doi":"10.2478/amsil-2023-0015","DOIUrl":null,"url":null,"abstract":"Abstract Let (S, +) be an abelian semigroup, let (H, +) be an abelian group which is uniquely 2-divisible, and let ϕ be an endomorphism of S. We find the solutions f, h : S → H of each of the functional equations f(x+y)+f(x+ϕ(y))=h(x)+f(y)+f∘ϕ(y), x,y∈S,f(x+y)+f(x+ϕ(y))=h(x)+2f(y), x,y∈S, \\matrix{ {f\\left( {x + y} \\right) + f\\left( {x + \\varphi \\left( y \\right)} \\right) = h\\left( x \\right) + f\\left( y \\right) + f \\circ \\varphi \\left( y \\right),\\,x,y \\in S,} \\hfill \\cr {f\\left( {x + y} \\right) + f\\left( {x + \\varphi \\left( y \\right)} \\right) = h\\left( x \\right) + 2f\\left( y \\right),\\,x,y \\in S,} \\hfill \\cr } in terms of additive and bi-additive maps. Moreover, as applications, we determine the solutions of some related functional equations.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2023-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Let (S, +) be an abelian semigroup, let (H, +) be an abelian group which is uniquely 2-divisible, and let ϕ be an endomorphism of S. We find the solutions f, h : S → H of each of the functional equations f(x+y)+f(x+ϕ(y))=h(x)+f(y)+f∘ϕ(y), x,y∈S,f(x+y)+f(x+ϕ(y))=h(x)+2f(y), x,y∈S, \matrix{ {f\left( {x + y} \right) + f\left( {x + \varphi \left( y \right)} \right) = h\left( x \right) + f\left( y \right) + f \circ \varphi \left( y \right),\,x,y \in S,} \hfill \cr {f\left( {x + y} \right) + f\left( {x + \varphi \left( y \right)} \right) = h\left( x \right) + 2f\left( y \right),\,x,y \in S,} \hfill \cr } in terms of additive and bi-additive maps. Moreover, as applications, we determine the solutions of some related functional equations.