R. Kataoka, D. Shiota, H. Fujiwara, H. Jin, C. Tao, H. Shinagawa, Y. Miyoshi
{"title":"Unexpected space weather causing the reentry of 38 Starlink satellites in February 2022","authors":"R. Kataoka, D. Shiota, H. Fujiwara, H. Jin, C. Tao, H. Shinagawa, Y. Miyoshi","doi":"10.1051/swsc/2022034","DOIUrl":null,"url":null,"abstract":"The accidental reentry of 38 Starlink satellites occurred in early February 2022, associated with the occurrence of moderate magnetic storms. A poorly understood structure of coronal mass ejections (CMEs) caused the magnetic storms at unexpected timing. Therefore, a better understanding of minor CME structures is necessary for the modern space weather forecast. During this event, the \"up to 50%\" enhancement of air drag force was observed at ~200 km altitude, preventing the satellites’ safety operations. Although the mass density enhancement predicted by the NRLMSIS2.0 empirical model is less than 25 % under the present moderate magnetic storms, the real-time GAIA simulation showed a mass density enhancement of up to 50%. Further, the real-time GAIA simulation suggests that the actual thermospheric disturbances at 200 km altitude may occur with larger amplitude in a broader area than previously thought.","PeriodicalId":17034,"journal":{"name":"Journal of Space Weather and Space Climate","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Space Weather and Space Climate","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/swsc/2022034","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 10
Abstract
The accidental reentry of 38 Starlink satellites occurred in early February 2022, associated with the occurrence of moderate magnetic storms. A poorly understood structure of coronal mass ejections (CMEs) caused the magnetic storms at unexpected timing. Therefore, a better understanding of minor CME structures is necessary for the modern space weather forecast. During this event, the "up to 50%" enhancement of air drag force was observed at ~200 km altitude, preventing the satellites’ safety operations. Although the mass density enhancement predicted by the NRLMSIS2.0 empirical model is less than 25 % under the present moderate magnetic storms, the real-time GAIA simulation showed a mass density enhancement of up to 50%. Further, the real-time GAIA simulation suggests that the actual thermospheric disturbances at 200 km altitude may occur with larger amplitude in a broader area than previously thought.
期刊介绍:
The Journal of Space Weather and Space Climate (SWSC) is an international multi-disciplinary and interdisciplinary peer-reviewed open access journal which publishes papers on all aspects of space weather and space climate from a broad range of scientific and technical fields including solar physics, space plasma physics, aeronomy, planetology, radio science, geophysics, biology, medicine, astronautics, aeronautics, electrical engineering, meteorology, climatology, mathematics, economy, informatics.