The bijectivity of mirror functors on tori

Pub Date : 2019-05-02 DOI:10.1215/21562261-2022-0021
Kazushi Kobayashi
{"title":"The bijectivity of mirror functors on tori","authors":"Kazushi Kobayashi","doi":"10.1215/21562261-2022-0021","DOIUrl":null,"url":null,"abstract":"By the SYZ construction, a mirror pair $(X,\\check{X})$ of a complex torus $X$ and a mirror partner $\\check{X}$ of the complex torus $X$ is described as the special Lagrangian torus fibrations $X \\rightarrow B$ and $\\check{X} \\rightarrow B$ on the same base space $B$. Then, by the SYZ transform, we can construct a simple projectively flat bundle on $X$ from each affine Lagrangian multi section of $\\check{X} \\rightarrow B$ with a unitary local system along it. However, there are ambiguities of the choices of transition functions of it, and this causes difficulties when we try to construct a functor between the symplectic geometric category and the complex geometric category. In this paper, we prove that there exists a bijection between the set of the isomorphism classes of their objects by solving this problem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2022-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

By the SYZ construction, a mirror pair $(X,\check{X})$ of a complex torus $X$ and a mirror partner $\check{X}$ of the complex torus $X$ is described as the special Lagrangian torus fibrations $X \rightarrow B$ and $\check{X} \rightarrow B$ on the same base space $B$. Then, by the SYZ transform, we can construct a simple projectively flat bundle on $X$ from each affine Lagrangian multi section of $\check{X} \rightarrow B$ with a unitary local system along it. However, there are ambiguities of the choices of transition functions of it, and this causes difficulties when we try to construct a functor between the symplectic geometric category and the complex geometric category. In this paper, we prove that there exists a bijection between the set of the isomorphism classes of their objects by solving this problem.
分享
查看原文
复曲面上镜像函子的双射性
通过SYZ构造,将复环面$X$的镜像对$(X,\check{X})$和复环面$X的镜像伙伴$\check{X}$描述为同一基空间$B$上的特殊拉格朗日环面纤维$X\rightarrow B$和$\check{X}\rightarrow B$。然后,通过SYZ变换,我们可以从$\check{X}\rightarrow B$的每一个仿射拉格朗日多区间构造$X$上的一个简单的投影平丛,并沿着它有一个酉局部系统,当我们试图在辛几何范畴和复几何范畴之间构造函子时,这就造成了困难。本文通过求解这个问题,证明了它们的对象的同构类的集合之间存在一个双射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信