Microstructural characteristics and mechanical properties of rotary friction-welded dissimilar AISI 431 steel/AISI 1018 steel joints

IF 1.7 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Dhamothara kannan Thirumalaikkannan, Sivaraj Paramasivam, Balasubramanian Visvalingam, Tushar Sonar, M. Ivanov, Seeman Murugaesan
{"title":"Microstructural characteristics and mechanical properties of rotary friction-welded dissimilar AISI 431 steel/AISI 1018 steel joints","authors":"Dhamothara kannan Thirumalaikkannan, Sivaraj Paramasivam, Balasubramanian Visvalingam, Tushar Sonar, M. Ivanov, Seeman Murugaesan","doi":"10.1515/jmbm-2022-0273","DOIUrl":null,"url":null,"abstract":"Abstract The main objective of this study was to analyze the microstructural characteristics and strength performance of dissimilar AISI 431 steel/AISI 1018 steel joints developed using rotary friction welding. The microstructural characteristics of different regions of dissimilar rod-to-plate joints were analyzed using optical microscopy. The tensile properties and microhardness of dissimilar rod-to-plate joints were evaluated to assess the joint performance. The microhardness distribution across the cross-sectional region of dissimilar rod-to-plate joints was recorded and correlated with the tensile failure. Scanning electron microscopy was used to analyze the fractured region of dissimilar rod-to-plate tensile specimens. Results showed that the dissimilar AISI 431 steel/AISI 1018 steel joints steel exhibited a tensile strength of 650 MPa, a yield strength of 452 MPa, and a % elongation of 18%. The microhardness of the weld interface (WI) was higher up to 515 HV0.5. The grain growth and resulting lower hardness in heat-affected zone (HAZ) are mainly responsible for the failure of the joints in HAZ only. The superior tensile properties and greater interface hardness of dissimilar AISI 431 steel/AISI 1018 steel joints are correlated with the evolution of finer grain microstructure in the WI zone.","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The main objective of this study was to analyze the microstructural characteristics and strength performance of dissimilar AISI 431 steel/AISI 1018 steel joints developed using rotary friction welding. The microstructural characteristics of different regions of dissimilar rod-to-plate joints were analyzed using optical microscopy. The tensile properties and microhardness of dissimilar rod-to-plate joints were evaluated to assess the joint performance. The microhardness distribution across the cross-sectional region of dissimilar rod-to-plate joints was recorded and correlated with the tensile failure. Scanning electron microscopy was used to analyze the fractured region of dissimilar rod-to-plate tensile specimens. Results showed that the dissimilar AISI 431 steel/AISI 1018 steel joints steel exhibited a tensile strength of 650 MPa, a yield strength of 452 MPa, and a % elongation of 18%. The microhardness of the weld interface (WI) was higher up to 515 HV0.5. The grain growth and resulting lower hardness in heat-affected zone (HAZ) are mainly responsible for the failure of the joints in HAZ only. The superior tensile properties and greater interface hardness of dissimilar AISI 431 steel/AISI 1018 steel joints are correlated with the evolution of finer grain microstructure in the WI zone.
旋转摩擦焊接AISI 431钢/AISI 1018钢异种接头的组织特征和力学性能
摘要本研究的主要目的是分析采用旋转摩擦焊开发的AISI 431钢/AISI 1018钢异种接头的微观结构特征和强度性能。利用光学显微镜分析了不同杆板接头不同区域的微观结构特征。评估了不同杆板接头的拉伸性能和显微硬度,以评估接头性能。记录了不同杆板接头横截面区域的显微硬度分布,并将其与拉伸失效相关联。采用扫描电子显微镜对不同杆板拉伸试样的断裂区域进行了分析。结果表明,不同的AISI 431钢/ASI 1018钢接头钢的抗拉强度为650 MPa,屈服强度452 MPa和18%的%伸长率。焊缝界面显微硬度高达515 HV0.5。热影响区晶粒长大和硬度降低是热影响区接头失效的主要原因。不同AISI 431钢/ASI 1018钢接头的优异拉伸性能和更大的界面硬度与WI区晶粒细化组织的演变有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Mechanical Behavior of Materials
Journal of the Mechanical Behavior of Materials Materials Science-Materials Science (miscellaneous)
CiteScore
3.00
自引率
11.10%
发文量
76
审稿时长
30 weeks
期刊介绍: The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信