EXPANDING MEASURES FOR HOMEOMORPHISMS WITH EVENTUALLY SHADOWING PROPERTY

IF 0.7 4区 数学 Q2 MATHEMATICS
M. Dong, Keonhee Lee, Ngocthach Nguyen
{"title":"EXPANDING MEASURES FOR HOMEOMORPHISMS WITH EVENTUALLY SHADOWING PROPERTY","authors":"M. Dong, Keonhee Lee, Ngocthach Nguyen","doi":"10.4134/JKMS.J190453","DOIUrl":null,"url":null,"abstract":"In this paper we present a measurable version of the Smale’s spectral decomposition theorem for homeomorphisms on compact metric spaces. More precisely, we prove that if a homeomorphism f on a compact metric space X is invariantly measure expanding on its chain recurrent set CR(f) and has the eventually shadowing property on CR(f), then f has the spectral decomposition. Moreover we show that f is invariantly measure expanding on X if and only if its restriction on CR(f) is invariantly measure expanding. Using this, we characterize the measure expanding diffeomorphisms on compact smooth manifolds via the notion of Ω-stability.","PeriodicalId":49993,"journal":{"name":"Journal of the Korean Mathematical Society","volume":"57 1","pages":"935-955"},"PeriodicalIF":0.7000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190453","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we present a measurable version of the Smale’s spectral decomposition theorem for homeomorphisms on compact metric spaces. More precisely, we prove that if a homeomorphism f on a compact metric space X is invariantly measure expanding on its chain recurrent set CR(f) and has the eventually shadowing property on CR(f), then f has the spectral decomposition. Moreover we show that f is invariantly measure expanding on X if and only if its restriction on CR(f) is invariantly measure expanding. Using this, we characterize the measure expanding diffeomorphisms on compact smooth manifolds via the notion of Ω-stability.
具有最终阴影性质的同胚的扩展测度
本文给出紧度量空间上同胚的Smale谱分解定理的一个可测版本。更确切地说,我们证明了如果紧度量空间X上的同纯态f在其链循环集CR(f)上是不变测度展开的,并且在CR(f)上具有最终阴影性质,则f具有谱分解。此外,我们还证明了f在X上是不变测度展开的当且仅当它对CR(f)的限制是不变测度展开。在此基础上,我们利用Ω-stability的概念对紧光滑流形上的扩展微分同态测度进行了刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
0
审稿时长
6-12 weeks
期刊介绍: This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信