Quotient singularities of products of two curves

Pub Date : 2021-12-15 DOI:10.5802/aif.3434
Kentaro Mitsui
{"title":"Quotient singularities of products of two curves","authors":"Kentaro Mitsui","doi":"10.5802/aif.3434","DOIUrl":null,"url":null,"abstract":"— We give a method to resolve a quotient surface singularity which arises as the quotient of a product action of a finite group on two curves. In the characteristic zero case, the singularity is resolved by means of a continued fraction, which is known as the Hirzebruch–Jung desingularization. We develop the method in the positive characteristic case where the square of the characteristic does not divide the order of the group. Résumé. — Nous donnons une méthode pour résoudre une singularité quotient de surface qui se présente comme le quotient d’une action produit d’un groupe fini sur deux courbes. En caractéristique nulle, la singularité est résolue au moyen d’une fraction continue (désingularisation de Hirzebruch–Jung). Nous développons la méthode dans le cas de la caractéristique strictement positive où le carré de la caractéristique ne divise pas l’ordre du groupe.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

— We give a method to resolve a quotient surface singularity which arises as the quotient of a product action of a finite group on two curves. In the characteristic zero case, the singularity is resolved by means of a continued fraction, which is known as the Hirzebruch–Jung desingularization. We develop the method in the positive characteristic case where the square of the characteristic does not divide the order of the group. Résumé. — Nous donnons une méthode pour résoudre une singularité quotient de surface qui se présente comme le quotient d’une action produit d’un groupe fini sur deux courbes. En caractéristique nulle, la singularité est résolue au moyen d’une fraction continue (désingularisation de Hirzebruch–Jung). Nous développons la méthode dans le cas de la caractéristique strictement positive où le carré de la caractéristique ne divise pas l’ordre du groupe.
分享
查看原文
两条曲线乘积的商奇异性
-我们给出了一种求解商曲面奇点的方法,该奇点是有限群在两条曲线上的乘积作用的商。在特征零的情况下,奇点通过连续分数来解决,该分数被称为Hirzebruch–Jung去语言化。我们在积极特征案例中开发了该方法,其中特征的平方不划分群的顺序。摘要-我们给出了一种求解曲面奇点商的方法,该奇点商表现为两条曲线上有限群产生的动作的商。在零特征中,奇点通过连续分数(Hirzebruch-Jung解凝)求解。我们在严格正特征的情况下开发该方法,其中特征的平方不划分群的顺序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信