On the cycle maximum of birth–death processes and networks of queues

Pub Date : 2023-09-01 DOI:10.1016/j.indag.2023.06.001
Richard J. Boucherie
{"title":"On the cycle maximum of birth–death processes and networks of queues","authors":"Richard J. Boucherie","doi":"10.1016/j.indag.2023.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>This paper considers the cycle maximum in birth–death processes as a stepping stone to characterisation of the asymptotic behaviour of the maximum number of customers in single queues and open Kelly–Whittle networks of queues. For positive recurrent birth–death processes we show that the sequence of sample maxima is stochastically compact. For transient birth–death processes we show that the sequence of sample maxima conditioned on the maximum being finite is stochastically compact.</p><p>We show that the Markov chain recording the total number of customers in a Kelly–Whittle network is a birth–death process with birth and death rates determined by the normalising constants in a suitably defined sequence of closed networks. Explicit or asymptotic expressions for these normalising constants allow asymptotic evaluation of the birth and death rates, which, in turn, allows characterisation of the cycle maximum in a single busy cycle, and convergence of the sequence of sample maxima for Kelly–Whittle networks of queues.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers the cycle maximum in birth–death processes as a stepping stone to characterisation of the asymptotic behaviour of the maximum number of customers in single queues and open Kelly–Whittle networks of queues. For positive recurrent birth–death processes we show that the sequence of sample maxima is stochastically compact. For transient birth–death processes we show that the sequence of sample maxima conditioned on the maximum being finite is stochastically compact.

We show that the Markov chain recording the total number of customers in a Kelly–Whittle network is a birth–death process with birth and death rates determined by the normalising constants in a suitably defined sequence of closed networks. Explicit or asymptotic expressions for these normalising constants allow asymptotic evaluation of the birth and death rates, which, in turn, allows characterisation of the cycle maximum in a single busy cycle, and convergence of the sequence of sample maxima for Kelly–Whittle networks of queues.

分享
查看原文
关于生灭过程和队列网络的周期最大值
本文将生-死过程中的循环最大值作为刻画单队列和开放队列Kelly-Whittle网络中最大顾客数的渐近行为的一个跳板。对于正循环生-死过程,我们证明了样本最大值的序列是随机紧凑的。对于瞬态生-死过程,我们证明了以最大值有限为条件的样本最大值序列是随机紧的。我们证明了记录Kelly-Whittle网络中客户总数的马尔可夫链是一个生灭过程,其生灭率由适当定义的封闭网络序列中的规范化常数决定。这些归一化常数的显式或渐近表达式允许对出生率和死亡率进行渐近评估,这反过来又允许在单个繁忙循环中描述循环最大值,以及Kelly-Whittle队列网络的样本最大值序列的收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信