Another Proof of the Nowicki Conjecture

IF 0.4 4区 数学 Q4 MATHEMATICS
V. Drensky
{"title":"Another Proof of the Nowicki Conjecture","authors":"V. Drensky","doi":"10.3836/tjm/1502179320","DOIUrl":null,"url":null,"abstract":"Let $K[X_d,Y_d]=K[x_1,\\ldots,x_d,y_1,\\ldots,y_d]$ be the polynomial algebra in $2d$ variables over a field $K$ of characteristic 0 and let $\\delta$ be the derivation of $K[X_d,Y_d]$ defined by $\\delta(y_i)=x_i$, $\\delta(x_i)=0$, $i=1,\\ldots,d$. In 1994 Nowicki conjectured that the algebra $K[X_d,Y_d]^{\\delta}$ of constants of $\\delta$ is generated by $X_d$ and $x_iy_j-y_ix_j$ for all $1\\leq i<j\\leq d$. The affirmative answer was given by several authors using different ideas. In the present paper we give another proof of the conjecture based on representation theory of the general linear group $GL_2(K)$.","PeriodicalId":48976,"journal":{"name":"Tokyo Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tokyo Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3836/tjm/1502179320","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

Let $K[X_d,Y_d]=K[x_1,\ldots,x_d,y_1,\ldots,y_d]$ be the polynomial algebra in $2d$ variables over a field $K$ of characteristic 0 and let $\delta$ be the derivation of $K[X_d,Y_d]$ defined by $\delta(y_i)=x_i$, $\delta(x_i)=0$, $i=1,\ldots,d$. In 1994 Nowicki conjectured that the algebra $K[X_d,Y_d]^{\delta}$ of constants of $\delta$ is generated by $X_d$ and $x_iy_j-y_ix_j$ for all $1\leq i
Nowicki猜想的另一个证明
设$K[X_d,Y_d]=K[X_1,\ldots,X_d,Y_1,\lots,Y_d]$是特征为0的字段$K$上的$2d$变量中的多项式代数,设$\delta$是由$\delta(Y_i)=X_i$,$\delda(X_i)=0$,$i=1,\ldts,d$定义的$K[X_d,Y_d]$的导数。1994年,Nowicki推测$\delta$的常数的代数$K[X_d,Y_d]^{\delta}$是由$X_d$和$X_iy_j-Y_ix_j$对所有$1\leq i<j\leq d$生成的。几位作者用不同的观点给出了肯定的答案。本文基于广义线性群$GL_2(K)$的表示理论,给出了该猜想的另一个证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
16.70%
发文量
27
审稿时长
>12 weeks
期刊介绍: The Tokyo Journal of Mathematics was founded in 1978 with the financial support of six institutions in the Tokyo area: Gakushuin University, Keio University, Sophia University, Tokyo Metropolitan University, Tsuda College, and Waseda University. In 2000 Chuo University and Meiji University, in 2005 Tokai University, and in 2013 Tokyo University of Science, joined as supporting institutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信