Spectral similarity algorithm-based image classification for oil spill mapping of hyperspectral datasets

Q3 Chemistry
Deepthi, T. Thomas
{"title":"Spectral similarity algorithm-based image classification for oil spill mapping of hyperspectral datasets","authors":"Deepthi, T. Thomas","doi":"10.1255/jsi.2020.a14","DOIUrl":null,"url":null,"abstract":"In remote sensing, the compositional information of part of the earth’s surface is statistically evaluated by comparing known field or library spectra with the unknown image spectra, known as spectral matching or spectral similarity analysis. In this research, hybrid spectral similarity algorithms developed based on chi-square distance (CHI or χ2) are used to retrieve useful information from the Hyperion hyperspectral oil spill image covering the area near Liaodong Bay of the Bohai Sea, China. In order to evaluate the discriminability of spectral similarity algorithms, a pixel-level matching is carried out between the reference vectors, viz. Oil Slick (O), Sheen (H), Sea Water (S) and Ship Track (T), collected visually from known areas in the image. The hybrid spectral similarity algorithms are statistically assessed for their performance using the spectral discriminatory measures (i) relative spectral discriminatory power (RSDPW), (ii) relative spectral discriminatory probability (RSDPB) and (iii) relative spectral discriminatory entropy (RSDE). Additionally, the selected hybrid algorithms are used on the Hyperion image subset to perform a pixel-based classification. Classification results revealed that the CHI-based hybrid algorithms performed better than all other hybrid spectral similarity methods. Therefore, the CHI-based hybrid algorithms demonstrated their superior spectral discrimination capacity to classify marine spectral classes for oil spill mapping from the hyperspectral dataset.","PeriodicalId":37385,"journal":{"name":"Journal of Spectral Imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1255/jsi.2020.a14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 4

Abstract

In remote sensing, the compositional information of part of the earth’s surface is statistically evaluated by comparing known field or library spectra with the unknown image spectra, known as spectral matching or spectral similarity analysis. In this research, hybrid spectral similarity algorithms developed based on chi-square distance (CHI or χ2) are used to retrieve useful information from the Hyperion hyperspectral oil spill image covering the area near Liaodong Bay of the Bohai Sea, China. In order to evaluate the discriminability of spectral similarity algorithms, a pixel-level matching is carried out between the reference vectors, viz. Oil Slick (O), Sheen (H), Sea Water (S) and Ship Track (T), collected visually from known areas in the image. The hybrid spectral similarity algorithms are statistically assessed for their performance using the spectral discriminatory measures (i) relative spectral discriminatory power (RSDPW), (ii) relative spectral discriminatory probability (RSDPB) and (iii) relative spectral discriminatory entropy (RSDE). Additionally, the selected hybrid algorithms are used on the Hyperion image subset to perform a pixel-based classification. Classification results revealed that the CHI-based hybrid algorithms performed better than all other hybrid spectral similarity methods. Therefore, the CHI-based hybrid algorithms demonstrated their superior spectral discrimination capacity to classify marine spectral classes for oil spill mapping from the hyperspectral dataset.
基于光谱相似度算法的高光谱数据集溢油映射图像分类
在遥感中,通过将已知的场或库光谱与未知的图像光谱进行比较,对部分地球表面的成分信息进行统计评估,称为光谱匹配或光谱相似分析。本文采用基于χ2或χ2的混合光谱相似算法,对覆盖辽东湾附近海域的Hyperion高光谱溢油图像进行有用信息检索。为了评估光谱相似算法的可分辨性,对图像中已知区域视觉采集的参考向量Oil Slick (O)、Sheen (H)、Sea Water (S)和Ship Track (T)进行像素级匹配。利用光谱判别度量(i)相对光谱判别功率(RSDPW)、(ii)相对光谱判别概率(RSDPB)和(iii)相对光谱判别熵(RSDE)对混合光谱相似算法的性能进行统计评估。此外,在Hyperion图像子集上使用所选择的混合算法来执行基于像素的分类。分类结果表明,基于chi的混合光谱相似度算法优于其他混合光谱相似度方法。因此,基于chi的混合算法显示出其优越的光谱识别能力,可以从高光谱数据集中对海洋光谱类别进行分类,用于溢油映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Spectral Imaging
Journal of Spectral Imaging Chemistry-Analytical Chemistry
CiteScore
3.90
自引率
0.00%
发文量
11
审稿时长
22 weeks
期刊介绍: JSI—Journal of Spectral Imaging is the first journal to bring together current research from the diverse research areas of spectral, hyperspectral and chemical imaging as well as related areas such as remote sensing, chemometrics, data mining and data handling for spectral image data. We believe all those working in Spectral Imaging can benefit from the knowledge of others even in widely different fields. We welcome original research papers, letters, review articles, tutorial papers, short communications and technical notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信