Ioan Bucataru, Oana Constantinescu, Georgeta Creţu
{"title":"First integrals for Finsler metrics with vanishing \\(\\chi \\)-curvature","authors":"Ioan Bucataru, Oana Constantinescu, Georgeta Creţu","doi":"10.1007/s10455-022-09872-y","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that in a Finsler manifold with vanishing <span>\\(\\chi \\)</span>-curvature (in particular with constant flag curvature) some non-Riemannian geometric structures are geodesically invariant and hence they induce a set of non-Riemannian first integrals. Two alternative expressions of these first integrals can be obtained either in terms of the mean Berwald curvature, or as functions of the mean Cartan torsion and the mean Landsberg curvature.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-022-09872-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove that in a Finsler manifold with vanishing \(\chi \)-curvature (in particular with constant flag curvature) some non-Riemannian geometric structures are geodesically invariant and hence they induce a set of non-Riemannian first integrals. Two alternative expressions of these first integrals can be obtained either in terms of the mean Berwald curvature, or as functions of the mean Cartan torsion and the mean Landsberg curvature.
期刊介绍:
This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field.
The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.