{"title":"Evolution operator for time-dependent non-Hermitian Hami ltonians","authors":"B. Bagchi","doi":"10.31526/LHEP.3.2018.02","DOIUrl":null,"url":null,"abstract":"The evolution operator \\(U(t)\\) for a time-independent parity-time-symmetric systems is well studied in the literature. However, for the non-Hermitian time-dependent systems, a closed form expression for the evolution operator is not available. In this paper, we make use of a procedure, originally developed by A.R.P. Rau [Phys.Rev.Lett, 81, 4785-4789 (1998)], in the context of deriving the solution of Liuville-Bloch equations in the product form of exponential operators when time-dependent external elds are present, for the evaluation of \\(U(t)\\) in the interaction picture wherein the corresponding Hamiltonian is time-dependent and in general non-Hermitian. This amounts to a transformation of the whole scheme in terms of addressing a nonlinear Riccati equation the existence of whose solutions depends on the fulllment of a certain accompanying integrabilty condition.","PeriodicalId":36085,"journal":{"name":"Letters in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in High Energy Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31526/LHEP.3.2018.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 7
Abstract
The evolution operator \(U(t)\) for a time-independent parity-time-symmetric systems is well studied in the literature. However, for the non-Hermitian time-dependent systems, a closed form expression for the evolution operator is not available. In this paper, we make use of a procedure, originally developed by A.R.P. Rau [Phys.Rev.Lett, 81, 4785-4789 (1998)], in the context of deriving the solution of Liuville-Bloch equations in the product form of exponential operators when time-dependent external elds are present, for the evaluation of \(U(t)\) in the interaction picture wherein the corresponding Hamiltonian is time-dependent and in general non-Hermitian. This amounts to a transformation of the whole scheme in terms of addressing a nonlinear Riccati equation the existence of whose solutions depends on the fulllment of a certain accompanying integrabilty condition.