Statistical analysis of the solar diffuse fraction radiation using regression analysis of longitudinal data in India

IF 1.1 Q3 Engineering
Hicham Salhi, Abdelmounaim Hadjira, B. Jamil
{"title":"Statistical analysis of the solar diffuse fraction radiation using regression analysis of longitudinal data in India","authors":"Hicham Salhi, Abdelmounaim Hadjira, B. Jamil","doi":"10.18186/thermal.1300542","DOIUrl":null,"url":null,"abstract":"In this study, the validity of the estimation of a single regression equation for the diffuse frac-tion across 22 stations in India using the two parameters: the clearness index and the sunshine ratio is tested. The homogeneity test based on Fisher’s statistics was applied to test the homo-geneity of the estimated parameters across all stations. The results showed that the p-value at the level of 5% for each model is smaller than 0.05, indicating that all stations were heteroge-neous. The Hierarchical Cluster Analysis (HCA) was used to classify the data into homoge-nous clusters. The results of HCA indicated that the longitudinal data were divided into four main clusters. For each cluster, the regression analysis was applied based on the longitudinal data then, the fixed effects model (FEM) and the random-effects model (REM) were used for the evaluation. Further, the Hausman test was applied to choose between the fixed effects model and the random-effects model. Finally, the results showed that the four best regression models were found for the selected stations in the study area.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1300542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the validity of the estimation of a single regression equation for the diffuse frac-tion across 22 stations in India using the two parameters: the clearness index and the sunshine ratio is tested. The homogeneity test based on Fisher’s statistics was applied to test the homo-geneity of the estimated parameters across all stations. The results showed that the p-value at the level of 5% for each model is smaller than 0.05, indicating that all stations were heteroge-neous. The Hierarchical Cluster Analysis (HCA) was used to classify the data into homoge-nous clusters. The results of HCA indicated that the longitudinal data were divided into four main clusters. For each cluster, the regression analysis was applied based on the longitudinal data then, the fixed effects model (FEM) and the random-effects model (REM) were used for the evaluation. Further, the Hausman test was applied to choose between the fixed effects model and the random-effects model. Finally, the results showed that the four best regression models were found for the selected stations in the study area.
利用印度纵向数据的回归分析对太阳散射部分辐射的统计分析
在本研究中,使用两个参数:清晰度指数和日照比,测试了印度22个站点的扩散分数的单一回归方程估计的有效性。采用基于Fisher统计量的同质性检验检验各站点估计参数的同质性。结果表明,各模型在5%水平下的p值均小于0.05,表明各台站均为异质性。采用层次聚类分析(HCA)对数据进行同质聚类。HCA结果表明,纵向数据可划分为4个主要聚类。对各聚类进行纵向数据回归分析,采用固定效应模型(FEM)和随机效应模型(REM)进行评价。进一步,采用Hausman检验在固定效应模型和随机效应模型之间进行选择。结果表明,对于研究区所选站点,找到了4种最佳回归模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
18.20%
发文量
61
审稿时长
4 weeks
期刊介绍: Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信