A. D. Ortega Sandoval, J. P. Rodríguez Sánchez, L. Bharati
{"title":"A transdisciplinary approach for assessing the potential feasibility of Sustainable Urban Drainage Systems: case study, Bogotá, Colombia","authors":"A. D. Ortega Sandoval, J. P. Rodríguez Sánchez, L. Bharati","doi":"10.1080/1573062X.2023.2233494","DOIUrl":null,"url":null,"abstract":"ABSTRACT Rapid population growth and urban sprawl have expanded built-up areas, affecting flood patterns in cities. Sustainable urban drainage systems (SUDS) have gained significant attention by attempting to replicate natural pre-development drainage conditions. This paper presents a new transdisciplinary methodology for assessing the potential feasibility of 12 different SUDS typologies by considering physical restrictions and six types of contextual barriers. The approach integrates input from academic and non-academic actors, fuzzy logic, geographic information system tools, and multi-criteria decision analysis. A neighborhood in Bogotá, Colombia, was selected as the unit of analysis, framing a relevant case study for highly urbanized areas. The findings demonstrate the differential impact of local context constraints and emphasize the importance of comprehensive approaches to SUDS planning that consider criteria other than technical. The methodology is a tool to support architects, engineers, urban planners, and urban water decision-makers in the planning of sustainable and flood-resilient cities.","PeriodicalId":49392,"journal":{"name":"Urban Water Journal","volume":"20 1","pages":"1081 - 1094"},"PeriodicalIF":1.6000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Water Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1573062X.2023.2233494","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Rapid population growth and urban sprawl have expanded built-up areas, affecting flood patterns in cities. Sustainable urban drainage systems (SUDS) have gained significant attention by attempting to replicate natural pre-development drainage conditions. This paper presents a new transdisciplinary methodology for assessing the potential feasibility of 12 different SUDS typologies by considering physical restrictions and six types of contextual barriers. The approach integrates input from academic and non-academic actors, fuzzy logic, geographic information system tools, and multi-criteria decision analysis. A neighborhood in Bogotá, Colombia, was selected as the unit of analysis, framing a relevant case study for highly urbanized areas. The findings demonstrate the differential impact of local context constraints and emphasize the importance of comprehensive approaches to SUDS planning that consider criteria other than technical. The methodology is a tool to support architects, engineers, urban planners, and urban water decision-makers in the planning of sustainable and flood-resilient cities.
期刊介绍:
Urban Water Journal provides a forum for the research and professional communities dealing with water systems in the urban environment, directly contributing to the furtherance of sustainable development. Particular emphasis is placed on the analysis of interrelationships and interactions between the individual water systems, urban water bodies and the wider environment. The Journal encourages the adoption of an integrated approach, and system''s thinking to solve the numerous problems associated with sustainable urban water management.
Urban Water Journal focuses on the water-related infrastructure in the city: namely potable water supply, treatment and distribution; wastewater collection, treatment and management, and environmental return; storm drainage and urban flood management. Specific topics of interest include:
network design, optimisation, management, operation and rehabilitation;
novel treatment processes for water and wastewater, resource recovery, treatment plant design and optimisation as well as treatment plants as part of the integrated urban water system;
demand management and water efficiency, water recycling and source control;
stormwater management, urban flood risk quantification and management;
monitoring, utilisation and management of urban water bodies including groundwater;
water-sensitive planning and design (including analysis of interactions of the urban water cycle with city planning and green infrastructure);
resilience of the urban water system, long term scenarios to manage uncertainty, system stress testing;
data needs, smart metering and sensors, advanced data analytics for knowledge discovery, quantification and management of uncertainty, smart technologies for urban water systems;
decision-support and informatic tools;...