Single Flux Quantum-Based Digital Control of Superconducting Qubits in a Multichip Module

IF 11 Q1 PHYSICS, APPLIED
Chuan-Hong Liu, A. Ballard, D. Olaya, D. Schmidt, J. Biesecker, T. Lucas, J. Ullom, S. Patel, Owen Rafferty, A. Opremcak, K. Dodge, V. Iaia, Tianna McBroom, J. Dubois, Peter Hopkins, S. Benz, B. Plourde, R. McDermott
{"title":"Single Flux Quantum-Based Digital Control of Superconducting Qubits in a Multichip Module","authors":"Chuan-Hong Liu, A. Ballard, D. Olaya, D. Schmidt, J. Biesecker, T. Lucas, J. Ullom, S. Patel, Owen Rafferty, A. Opremcak, K. Dodge, V. Iaia, Tianna McBroom, J. Dubois, Peter Hopkins, S. Benz, B. Plourde, R. McDermott","doi":"10.1103/PRXQuantum.4.030310","DOIUrl":null,"url":null,"abstract":"The single flux quantum (SFQ) digital superconducting logic family has been proposed for the scalable control of next-generation superconducting qubit arrays. In the initial implementation, SFQ-based gate fidelity was limited by quasiparticle (QP) poisoning induced by the dissipative on-chip SFQ driver circuit. In this work, we introduce a multi-chip module architecture to suppress phonon-mediated QP poisoning. Here, the SFQ elements and qubits are fabricated on separate chips that are joined with In bump bonds. We use interleaved randomized benchmarking to characterize the fidelity of SFQ-based gates, and we demonstrate an error per Clifford gate of 1.2(1)%, an order-of-magnitude reduction over the gate error achieved in the initial realization of SFQ-based qubit control. We use purity benchmarking to quantify the contribution of incoherent error at 0.96(2)%; we attribute this error to photon-mediated QP poisoning mediated by the resonant mm-wave antenna modes of the qubit and SFQ-qubit coupler. We anticipate that a straightforward redesign of the SFQ driver circuit to limit the bandwidth of the SFQ pulses will eliminate this source of infidelity, allowing SFQ-based gates with fidelity approaching theoretical limits, namely 99.9% for resonant sequences and 99.99% for more complex pulse sequences involving variable pulse-to-pulse separation.","PeriodicalId":74587,"journal":{"name":"PRX quantum : a Physical Review journal","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX quantum : a Physical Review journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PRXQuantum.4.030310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 9

Abstract

The single flux quantum (SFQ) digital superconducting logic family has been proposed for the scalable control of next-generation superconducting qubit arrays. In the initial implementation, SFQ-based gate fidelity was limited by quasiparticle (QP) poisoning induced by the dissipative on-chip SFQ driver circuit. In this work, we introduce a multi-chip module architecture to suppress phonon-mediated QP poisoning. Here, the SFQ elements and qubits are fabricated on separate chips that are joined with In bump bonds. We use interleaved randomized benchmarking to characterize the fidelity of SFQ-based gates, and we demonstrate an error per Clifford gate of 1.2(1)%, an order-of-magnitude reduction over the gate error achieved in the initial realization of SFQ-based qubit control. We use purity benchmarking to quantify the contribution of incoherent error at 0.96(2)%; we attribute this error to photon-mediated QP poisoning mediated by the resonant mm-wave antenna modes of the qubit and SFQ-qubit coupler. We anticipate that a straightforward redesign of the SFQ driver circuit to limit the bandwidth of the SFQ pulses will eliminate this source of infidelity, allowing SFQ-based gates with fidelity approaching theoretical limits, namely 99.9% for resonant sequences and 99.99% for more complex pulse sequences involving variable pulse-to-pulse separation.
多芯片模块中基于单通量量子的超导量子比特数字控制
提出了单通量量子(SFQ)数字超导逻辑族,用于下一代超导量子比特阵列的可扩展控制。在最初的实现中,基于SFQ的门保真度受到片上耗散SFQ驱动电路引起的准粒子(QP)中毒的限制。在这项工作中,我们引入了一个多芯片模块架构来抑制声子介导的QP中毒。在这里,SFQ元件和量子位是在单独的芯片上制造的,这些芯片用In碰撞键连接。我们使用交错随机基准测试来表征基于sfq的门的保真度,并且我们证明了每个Clifford门的误差为1.2(1)%,比初始实现基于sfq的量子比特控制时实现的门误差降低了一个数量级。我们使用纯度基准测试将非相干误差的贡献量化为0.96(2)%;我们将此误差归因于量子比特和sfq -量子比特耦合器的谐振毫米波天线模式介导的光子介导的QP中毒。我们预计,直接重新设计SFQ驱动电路以限制SFQ脉冲的带宽将消除这种不忠源,使基于SFQ的门具有接近理论极限的保真度,即共振序列为99.9%,涉及可变脉冲到脉冲分离的更复杂脉冲序列为99.99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信