{"title":"Borel–Moore homology of determinantal varieties","authors":"A. C. LHorincz, Claudiu Raicu","doi":"10.14231/ag-2023-020","DOIUrl":null,"url":null,"abstract":"We compute the rational Borel-Moore homology groups for affine determinantal varieties in the spaces of general, symmetric, and skew-symmetric matrices, solving a problem suggested by the work of Pragacz and Ratajski. The main ingredient is the relation with Hartshorne's algebraic de Rham homology theory, and the calculation of the singular cohomology of matrix orbits, using the methods of Cartan and Borel. We also establish the degeneration of the \\v{C}ech-de Rham spectral sequence for determinantal varieties, and compute explicitly the dimensions of de Rham cohomology groups of local cohomology with determinantal support, which are analogues of Lyubeznik numbers first introduced by Switala. Additionally, in the case of general matrices we further determine the Hodge numbers of the singular cohomology of matrix orbits and of the Borel-Moore homology of their closures, based on Saito's theory of mixed Hodge modules.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2023-020","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We compute the rational Borel-Moore homology groups for affine determinantal varieties in the spaces of general, symmetric, and skew-symmetric matrices, solving a problem suggested by the work of Pragacz and Ratajski. The main ingredient is the relation with Hartshorne's algebraic de Rham homology theory, and the calculation of the singular cohomology of matrix orbits, using the methods of Cartan and Borel. We also establish the degeneration of the \v{C}ech-de Rham spectral sequence for determinantal varieties, and compute explicitly the dimensions of de Rham cohomology groups of local cohomology with determinantal support, which are analogues of Lyubeznik numbers first introduced by Switala. Additionally, in the case of general matrices we further determine the Hodge numbers of the singular cohomology of matrix orbits and of the Borel-Moore homology of their closures, based on Saito's theory of mixed Hodge modules.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.