Driving mechanism of dragonfly’s wing flapping pattern for liquid circulation inside wing

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yunjie Wang, Yajun Yin, G. Zheng, Hongxiang Yao
{"title":"Driving mechanism of dragonfly’s wing flapping pattern for liquid circulation inside wing","authors":"Yunjie Wang, Yajun Yin, G. Zheng, Hongxiang Yao","doi":"10.1163/15707563-BJA10048","DOIUrl":null,"url":null,"abstract":"\n Flying animals can inspire practical approaches to a more advanced way of flying. Dragonflies demonstrate a special flapping pattern in which their wings perform torsional movement while flapping, which is different from that of birds. This flapping pattern is referred to as nonsynchronous flapping in this article. We present a hypothesis that nonsynchronous flapping provides a driving force for enhancing the haemolymph circulation inside dragonfly wings. To support this hypothesis, a controlled experiment was designed and conducted with living dragonflies. By observing the liquid motion inside the vein within free flapping wings and restricted wings of living dragonflies, this hypothesis was supported. A mathematical model of the flapping wing was built and numerically studied to further support the function of the nonsynchronous flapping pattern in driving the circulation. With these studies, a theoretical explanation for the mechanism of enhancing the haemolymph circulation by nonsynchronous flapping was provided.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/15707563-BJA10048","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1163/15707563-BJA10048","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

Flying animals can inspire practical approaches to a more advanced way of flying. Dragonflies demonstrate a special flapping pattern in which their wings perform torsional movement while flapping, which is different from that of birds. This flapping pattern is referred to as nonsynchronous flapping in this article. We present a hypothesis that nonsynchronous flapping provides a driving force for enhancing the haemolymph circulation inside dragonfly wings. To support this hypothesis, a controlled experiment was designed and conducted with living dragonflies. By observing the liquid motion inside the vein within free flapping wings and restricted wings of living dragonflies, this hypothesis was supported. A mathematical model of the flapping wing was built and numerically studied to further support the function of the nonsynchronous flapping pattern in driving the circulation. With these studies, a theoretical explanation for the mechanism of enhancing the haemolymph circulation by nonsynchronous flapping was provided.
蜻蜓翅膀扇动模式对翅膀内部液体循环的驱动机制
会飞的动物可以启发更先进的飞行方式的实用方法。蜻蜓表现出一种特殊的拍打模式,它们的翅膀在拍打时进行扭转运动,这与鸟类不同。这种扑动模式在本文中称为非同步扑动。我们提出了一种假设,即非同步拍打为增强蜻蜓翅膀内的血淋巴循环提供了动力。为了支持这一假设,研究人员设计并使用活蜻蜓进行了一项对照实验。通过对活蜻蜓自由振翅和受限翅内静脉内液体运动的观察,支持了这一假设。建立了扑翼的数学模型,并对其进行了数值研究,进一步支持了非同步扑翼在驱动环流中的作用。本研究为非同步扑动促进血淋巴循环的机理提供了理论解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信