Positive definite radial kernels on homogeneous trees and products

IF 0.7 4区 数学 Q2 MATHEMATICS
I. Vergara
{"title":"Positive definite radial kernels on homogeneous trees and products","authors":"I. Vergara","doi":"10.7900/jot.2019aug07.2243","DOIUrl":null,"url":null,"abstract":"We give a new proof of a classical result which provides a one-to-one correspondence between positive definite radial kernels on a homogeneous tree and finite Borel measures on the interval $[-1,1]$. Our methods allow us to find a new characterisation in terms of positive trace-class operators on $\\ell_2$. Furthermore, we extend both characterisations to finite products of homogeneous trees. The proof relies on a formula for the norm of radial Schur multipliers, in the spirit of Haagerup--Steenstrup--Szwarc, and a variation of the Hamburger moment problem.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2019aug07.2243","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give a new proof of a classical result which provides a one-to-one correspondence between positive definite radial kernels on a homogeneous tree and finite Borel measures on the interval $[-1,1]$. Our methods allow us to find a new characterisation in terms of positive trace-class operators on $\ell_2$. Furthermore, we extend both characterisations to finite products of homogeneous trees. The proof relies on a formula for the norm of radial Schur multipliers, in the spirit of Haagerup--Steenstrup--Szwarc, and a variation of the Hamburger moment problem.
齐次树和乘积上的正定径向核
我们给出了一个经典结果的新证明,该结果提供了齐次树上的正定径向核与区间$[-1,1]$上的有限Borel测度之间的一一对应关系。我们的方法使我们能够根据$\ell_2$上的正跟踪类运算符找到一个新的刻画。此外,我们将这两个特征都扩展到齐次树的有限乘积。根据Haagerup-Steenstup-Szwarc的精神,证明依赖于径向Schur乘子范数的公式,以及Hamburger矩问题的变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信