Partial Fraction Decomposition of Matrices and Parallel Computing

IF 0.8 4区 数学
F. H. A. S. Kaber
{"title":"Partial Fraction Decomposition of Matrices and Parallel Computing","authors":"F. H. A. S. Kaber","doi":"10.4208/jms.v52n3.19.02","DOIUrl":null,"url":null,"abstract":"We are interested in the design of parallel numerical schemes for linear systems. We give an effective solution to this problem in the following case: the matrix A of the linear system is the product of p nonsingular matrices Am i with specific shape: Ai = I−hiX for a fixed matrix X and real numbers hi. Although having a special form, these matrices Ai arise frequently in the discretization of evolutionary Partial Differential Equations. For example, one step of the implicit Euler scheme for the evolution equation u′=Xu reads (I−hX)un+1 =un. Iterating m times such a scheme leads to a linear system Aun+m = un. The idea is to express A−1 as a linear combination of elementary matrices A−1 i (or more generally in term of matrices A −k i ). Hence the solution of the linear system with matrix A is a linear combination of the solutions of linear systems with matrices Ai (or Ak i ). These systems are then solved simultaneously on different processors. AMS subject classifications: 65M60, 65Y05, 35K45, 74S05, 74S20","PeriodicalId":43526,"journal":{"name":"数学研究","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学研究","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jms.v52n3.19.02","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We are interested in the design of parallel numerical schemes for linear systems. We give an effective solution to this problem in the following case: the matrix A of the linear system is the product of p nonsingular matrices Am i with specific shape: Ai = I−hiX for a fixed matrix X and real numbers hi. Although having a special form, these matrices Ai arise frequently in the discretization of evolutionary Partial Differential Equations. For example, one step of the implicit Euler scheme for the evolution equation u′=Xu reads (I−hX)un+1 =un. Iterating m times such a scheme leads to a linear system Aun+m = un. The idea is to express A−1 as a linear combination of elementary matrices A−1 i (or more generally in term of matrices A −k i ). Hence the solution of the linear system with matrix A is a linear combination of the solutions of linear systems with matrices Ai (or Ak i ). These systems are then solved simultaneously on different processors. AMS subject classifications: 65M60, 65Y05, 35K45, 74S05, 74S20
矩阵的部分分式分解与并行计算
我们对线性系统的并行数值格式的设计感兴趣。在以下情况下,我们给出了这个问题的有效解:线性系统的矩阵A是具有特定形状的p个非奇异矩阵Am i的乘积:对于固定矩阵X和实数hi,Ai=i−hiX。尽管这些矩阵Ai具有特殊的形式,但在演化偏微分方程的离散化中经常出现。例如,演化方程u′=Xu的隐式欧拉格式的一个步骤读作(I−hX)un+1=un。将这种方案迭代m次,得到线性系统Aun+m=un。其思想是将A−1表示为初等矩阵A−1 i的线性组合(或更一般地用矩阵A−k i表示)。因此,具有矩阵A的线性系统的解是具有矩阵Ai(或Aki)的线性系统解的线性组合。然后在不同的处理器上同时求解这些系统。AMS受试者分类:65M60、65Y05、35K45、74S05、74S20
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
数学研究
数学研究 MATHEMATICS-
自引率
0.00%
发文量
1109
期刊介绍: Journal of Mathematical Study (JMS) is a comprehensive mathematical journal published jointly by Global Science Press and Xiamen University. It publishes original research and survey papers, in English, of high scientific value in all major fields of mathematics, including pure mathematics, applied mathematics, operational research, and computational mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信