{"title":"Existence of viscosity solutions with the optimal regularity of a two-peakon Hamilton–Jacobi equation","authors":"Tomasz Cieślak, Jakub Siemianowski","doi":"10.1142/s0219891621500156","DOIUrl":null,"url":null,"abstract":"We study here a Hamilton–Jacobi equation with a quadratic and degenerate Hamiltonian, which comes from the dynamics of a multipeakon in the Camassa–Holm equation. It is given by a quadratic form with a singular positive semi-definite matrix. We increase the regularity of the value function considered in earlier works, which is known to be the viscosity solution. We prove that for a two-peakon Hamiltonian such solutions are actually [Formula: see text]-Hölder continuous in space and time-Lipschitz continuous. The time-Lipschitz regularity is proven in any dimension [Formula: see text]. Such a regularity is already known in the one-dimensional case and, moreover it is the best possible, as shown earlier.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hyperbolic Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219891621500156","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We study here a Hamilton–Jacobi equation with a quadratic and degenerate Hamiltonian, which comes from the dynamics of a multipeakon in the Camassa–Holm equation. It is given by a quadratic form with a singular positive semi-definite matrix. We increase the regularity of the value function considered in earlier works, which is known to be the viscosity solution. We prove that for a two-peakon Hamiltonian such solutions are actually [Formula: see text]-Hölder continuous in space and time-Lipschitz continuous. The time-Lipschitz regularity is proven in any dimension [Formula: see text]. Such a regularity is already known in the one-dimensional case and, moreover it is the best possible, as shown earlier.
期刊介绍:
This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in:
Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions.
Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc.
Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations.
Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc.
General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations.
Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.