{"title":"A CONSTRUCTION OF GRAPHS WITH POSITIVE RICCI CURVATURE","authors":"Taiki Yamada","doi":"10.2206/kyushujm.74.291","DOIUrl":null,"url":null,"abstract":"Two complete graphs are connected by adding some edges. The obtained graph is called the gluing graph. The more we add edges, the larger the Ricci curvature on it becomes. We calculate the Ricci curvature of each edge on the gluing graph and obtain the least number of edges that result in the gluing graph having positive Ricci curvature.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.74.291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Two complete graphs are connected by adding some edges. The obtained graph is called the gluing graph. The more we add edges, the larger the Ricci curvature on it becomes. We calculate the Ricci curvature of each edge on the gluing graph and obtain the least number of edges that result in the gluing graph having positive Ricci curvature.