Metric theory of diophantine approximation and asymptotic estimates for the number of polynomials with given discriminants divisible by a large power of a prime number
V. Bernik, D. V. Vasilyev, N. I. Kalosha, Zh. I. Panteleeva
{"title":"Metric theory of diophantine approximation and asymptotic estimates for the number of polynomials with given discriminants divisible by a large power of a prime number","authors":"V. Bernik, D. V. Vasilyev, N. I. Kalosha, Zh. I. Panteleeva","doi":"10.29235/1561-8323-2023-67-4-271-278","DOIUrl":null,"url":null,"abstract":"Discriminants of polynomials characterize the distribution of roots of polynomials in the complex plane. In recent years, for integer polynomials, exact lower-bound estimates have been obtained for the number of polynomials of a given degree and height. The method of obtaining these estimates is based on Minkowski’s theorems in the geometry of numbers and the metric theory of Diophantine approximation. A new method is proposed and allows one to obtain upperbound estimates for the number of polynomials with bounded discriminants in Archimedean and non-Archimedean metrics. The method generalizes the ideas of H. Davenport, B. Volkman, and V. Sprindzuk that allowed them to obtain significant advances in solving Mahler’s problem.","PeriodicalId":41825,"journal":{"name":"DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-8323-2023-67-4-271-278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Discriminants of polynomials characterize the distribution of roots of polynomials in the complex plane. In recent years, for integer polynomials, exact lower-bound estimates have been obtained for the number of polynomials of a given degree and height. The method of obtaining these estimates is based on Minkowski’s theorems in the geometry of numbers and the metric theory of Diophantine approximation. A new method is proposed and allows one to obtain upperbound estimates for the number of polynomials with bounded discriminants in Archimedean and non-Archimedean metrics. The method generalizes the ideas of H. Davenport, B. Volkman, and V. Sprindzuk that allowed them to obtain significant advances in solving Mahler’s problem.
多项式的判别式表征了多项式的根在复平面上的分布。近年来,对于整数多项式,已经获得了给定阶数和高度的多项式个数的精确下界估计。得到这些估计的方法是基于闵可夫斯基的数几何定理和丢番图近似的度量理论。提出了一种新的方法,可以得到在阿基米德度量和非阿基米德度量中具有有界判别式的多项式数目的上界估计。该方法概括了H. Davenport, B. Volkman和V. Sprindzuk的思想,这些思想使他们在解决马勒问题方面取得了重大进展。