Dynamics of the Caspian Sea Waters over the Apsheron Sill in 2003

IF 0.7 Q4 OCEANOGRAPHY
G. Dyakonov, R. Ibrayev
{"title":"Dynamics of the Caspian Sea Waters over the Apsheron Sill in 2003","authors":"G. Dyakonov, R. Ibrayev","doi":"10.22449/0233-7584-2019-6-633-645","DOIUrl":null,"url":null,"abstract":"Purpose. The paper is aimed at studying water exchange between the Middle and South Caspian, at assessing its intensity, spatial-temporal structure and variability. Methods and Results. The study includes the numerical model of the Caspian Sea general circulation; it is of sufficiently high resolution for reproducing mesoscale structure of the currents – 2 km. Due to the model, the Caspian Sea circulation in 2003 was reconstructed and the basic characteristics of water transfer between the Middle and the South Caspian were calculated. This specific year was chosen since in all its months, the wind fields in the Middle and South Caspian water areas were in good agreement with the average climatic ones. The simulated structure of the currents over the Apsheron Sill represents the following pattern: the northward currents are most often formed over the eastern shelf slopes, and the southward ones – over the western shelf slope. The latter are usually more intense and regular. From mid-July to October, the easterly winds regularly occur over the Caspian Sea strengthening the northward currents, which, in their turn, transfer relatively salty and warm South Caspian waters to the Middle Caspian along the eastern coast. A fairly stable southward stream resulted from the density gradient between the cold Middle and the warm South Caspian, is located along the western shelf slope at the depths 100–150 m. On the whole, the water flow above the sill is directed from north to south. At that the southward flows are distributed rather evenly throughout the year, whereas the major part of the northward currents’ flow is observed from late July to December. Conclusions. Since the South Caspian waters on all the depths are warmer and more salty than those in the Middle, water exchange between the two basins in course of the whole year, contributes to increase both of temperature and salinity in the Middle Caspian, and to their decrease in the South Caspian. The current-originated salt flows in the region are sufficient to make salinity grow in the Middle Caspian upper layer by 0.5 psu within 100 days, at that the corresponding temperature increase does not exceed 0.01–0.03 °C per day. The reverse southward currents transfer relatively fresh water to the South Caspian that lowers salinity of its upper layer by 0.2 psu per month. However, such intense intrusions are noted only in March and December. The impact of these currents on the South Caspian heat balance is more uniform throughout the year and does not exceed 0.17 °C/day.","PeriodicalId":43550,"journal":{"name":"Physical Oceanography","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22449/0233-7584-2019-6-633-645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 3

Abstract

Purpose. The paper is aimed at studying water exchange between the Middle and South Caspian, at assessing its intensity, spatial-temporal structure and variability. Methods and Results. The study includes the numerical model of the Caspian Sea general circulation; it is of sufficiently high resolution for reproducing mesoscale structure of the currents – 2 km. Due to the model, the Caspian Sea circulation in 2003 was reconstructed and the basic characteristics of water transfer between the Middle and the South Caspian were calculated. This specific year was chosen since in all its months, the wind fields in the Middle and South Caspian water areas were in good agreement with the average climatic ones. The simulated structure of the currents over the Apsheron Sill represents the following pattern: the northward currents are most often formed over the eastern shelf slopes, and the southward ones – over the western shelf slope. The latter are usually more intense and regular. From mid-July to October, the easterly winds regularly occur over the Caspian Sea strengthening the northward currents, which, in their turn, transfer relatively salty and warm South Caspian waters to the Middle Caspian along the eastern coast. A fairly stable southward stream resulted from the density gradient between the cold Middle and the warm South Caspian, is located along the western shelf slope at the depths 100–150 m. On the whole, the water flow above the sill is directed from north to south. At that the southward flows are distributed rather evenly throughout the year, whereas the major part of the northward currents’ flow is observed from late July to December. Conclusions. Since the South Caspian waters on all the depths are warmer and more salty than those in the Middle, water exchange between the two basins in course of the whole year, contributes to increase both of temperature and salinity in the Middle Caspian, and to their decrease in the South Caspian. The current-originated salt flows in the region are sufficient to make salinity grow in the Middle Caspian upper layer by 0.5 psu within 100 days, at that the corresponding temperature increase does not exceed 0.01–0.03 °C per day. The reverse southward currents transfer relatively fresh water to the South Caspian that lowers salinity of its upper layer by 0.2 psu per month. However, such intense intrusions are noted only in March and December. The impact of these currents on the South Caspian heat balance is more uniform throughout the year and does not exceed 0.17 °C/day.
2003年阿普舍隆海峡里海水域的动态
意图本文旨在研究中里海和南里海之间的水交换,评估其强度、时空结构和变异性。方法和结果。研究内容包括里海环流的数值模式;它具有足够高的分辨率,可以再现2km的中尺度海流结构。由于该模型,重建了2003年的里海环流,并计算了中里海和南里海之间的水传输的基本特征。之所以选择这一特定年份,是因为在所有月份里,里海中部和南部水域的风场与平均气候场非常一致。Apsheron Sill上的模拟洋流结构代表了以下模式:向北的洋流最常在东部陆架斜坡上形成,向南的洋流则在西部陆架斜坡之上形成。后者通常更激烈和更有规律。从7月中旬到10月,里海上空经常出现东风,增强了向北的洋流,从而将相对咸暖的南里海水沿东海岸转移到中里海水。一条相当稳定的南流,由寒冷的中里海盆和温暖的南里海盆之间的密度梯度产生,位于100–150米深处的西部陆架斜坡上。总的来说,陆架上方的水流是从北向南流动的。此时,南流在一年中分布相当均匀,而北流的大部分是在7月下旬至12月观察到的。结论。由于所有深度的南里海盆水都比中部的水更温暖、更咸,因此全年两个盆地之间的水交换有助于提高中里海盆的温度和盐度,并有助于降低南里海盆的气温和盐度。该地区的电流或原始盐流足以使中里海上层的盐度在100天内增加0.5 psu,相应的温度每天增加不超过0.01–0.03°C。反向南流将相对新鲜的水输送到南里海内,从而使其上层的盐度每月降低0.2 psu。然而,只有在3月和12月才发现如此强烈的入侵。这些洋流对南里海热平衡的影响全年更加均匀,不超过0.17°C/天。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Oceanography
Physical Oceanography OCEANOGRAPHY-
CiteScore
1.80
自引率
25.00%
发文量
8
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信