M. Alvarez, M. E. García, Daniel García-Vivó, Miguel A. Ruiz, Patricia Vega
{"title":"Isocyanide Cycloaddition and Coordination Processes at Trigonal Phosphinidene-Bridged MoRe and MoMn Complexes","authors":"M. Alvarez, M. E. García, Daniel García-Vivó, Miguel A. Ruiz, Patricia Vega","doi":"10.3390/inorganics11090364","DOIUrl":null,"url":null,"abstract":"Heterometallic phosphinidene complexes are appealing species for the construction of novel organophosphorus ligands thanks to the high reactivity expected from the combination of M-P multiple bonding and the intrinsically different electronic and coordination preferences of the distinct metals. In a preliminary study, we found that the heterobimetallic complex [MoReCp(μ-PMes*)(CO)6] (Mes* = 2,4,6-C6H2tBu3) reacted with CN(p-C6H4OMe) via [2+1]-cycloaddition to form a novel azaphosphallene complex. We have now examined in detail the reactions of the above complex and those of its MoMn analogue with different isocyanides, which turned out to be strongly dependent on experimental conditions and on the size of the substituent at the isocyanide. All the products formed follow from one or several of the following reaction pathways: (i) CO substitution by CNR; (ii) addition of CNR at the group 7 metal centre; and (iii) [2+1] cycloaddition of isocyanide at a Mo=P bond to form azaphosphallene groups, with the former process being dominant in reactions at room temperature and for the Mn system. In contrast, low-temperature reactions of the Re system favoured the addition processes, with the [2+1] cycloaddition at Mo=P bonds only taking place at substrates without metal-metal bonds and when the size of the CNR group does not cause unbearable steric clashes when placed in between the Cp and Mes* groups.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/inorganics11090364","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Heterometallic phosphinidene complexes are appealing species for the construction of novel organophosphorus ligands thanks to the high reactivity expected from the combination of M-P multiple bonding and the intrinsically different electronic and coordination preferences of the distinct metals. In a preliminary study, we found that the heterobimetallic complex [MoReCp(μ-PMes*)(CO)6] (Mes* = 2,4,6-C6H2tBu3) reacted with CN(p-C6H4OMe) via [2+1]-cycloaddition to form a novel azaphosphallene complex. We have now examined in detail the reactions of the above complex and those of its MoMn analogue with different isocyanides, which turned out to be strongly dependent on experimental conditions and on the size of the substituent at the isocyanide. All the products formed follow from one or several of the following reaction pathways: (i) CO substitution by CNR; (ii) addition of CNR at the group 7 metal centre; and (iii) [2+1] cycloaddition of isocyanide at a Mo=P bond to form azaphosphallene groups, with the former process being dominant in reactions at room temperature and for the Mn system. In contrast, low-temperature reactions of the Re system favoured the addition processes, with the [2+1] cycloaddition at Mo=P bonds only taking place at substrates without metal-metal bonds and when the size of the CNR group does not cause unbearable steric clashes when placed in between the Cp and Mes* groups.
期刊介绍:
Inorganics is an open access journal that covers all aspects of inorganic chemistry research. Topics include but are not limited to: synthesis and characterization of inorganic compounds, complexes and materials structure and bonding in inorganic molecular and solid state compounds spectroscopic, magnetic, physical and chemical properties of inorganic compounds chemical reactivity, physical properties and applications of inorganic compounds and materials mechanisms of inorganic reactions organometallic compounds inorganic cluster chemistry heterogenous and homogeneous catalytic reactions promoted by inorganic compounds thermodynamics and kinetics of significant new and known inorganic compounds supramolecular systems and coordination polymers bio-inorganic chemistry and applications of inorganic compounds in biological systems and medicine environmental and sustainable energy applications of inorganic compounds and materials MD