Growth of $p$-parts of ideal class groups and fine Selmer groups in $\mathbb Z_q$-extensions with $p\ne q$

IF 0.5 3区 数学 Q3 MATHEMATICS
Debanjana Kundu, Antonio Lei
{"title":"Growth of $p$-parts of ideal class groups and fine Selmer groups in $\\mathbb Z_q$-extensions with $p\\ne q$","authors":"Debanjana Kundu, Antonio Lei","doi":"10.4064/aa220518-28-2","DOIUrl":null,"url":null,"abstract":"Fix two distinct odd primes $p$ and $q$. We study\"$p\\ne q$\"Iwasawa theory in two different settings. Let $K$ be an imaginary quadratic field of class number 1 such that both $p$ and $q$ split in $K$. We show that under appropriate hypotheses, the $p$-part of the ideal class groups is bounded over finite subextensions of an anticyclotomic $\\mathbb{Z}_q$-extension of $K$. Let $F$ be a number field and let $A_{/F}$ be an abelian variety with $A[p]\\subseteq A(F)$. We give sufficient conditions for the $p$-part of the fine Selmer groups of $A$ over finite subextensions of a $\\mathbb{Z}_q$-extension of $F$ to stabilize.","PeriodicalId":37888,"journal":{"name":"Acta Arithmetica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Arithmetica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/aa220518-28-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Fix two distinct odd primes $p$ and $q$. We study"$p\ne q$"Iwasawa theory in two different settings. Let $K$ be an imaginary quadratic field of class number 1 such that both $p$ and $q$ split in $K$. We show that under appropriate hypotheses, the $p$-part of the ideal class groups is bounded over finite subextensions of an anticyclotomic $\mathbb{Z}_q$-extension of $K$. Let $F$ be a number field and let $A_{/F}$ be an abelian variety with $A[p]\subseteq A(F)$. We give sufficient conditions for the $p$-part of the fine Selmer groups of $A$ over finite subextensions of a $\mathbb{Z}_q$-extension of $F$ to stabilize.
$\mathbb Z_q$中理想类群和精细Selmer群的$p$-部分的增长- $p\ne q$的扩展
修复两个不同的奇素数$p$和$q$。我们在两个不同的背景下研究“$p\neq$”岩泽理论。设$K$是类数为1的虚二次域,使得$p$和$q$都在$K$中分裂。我们证明了在适当的假设下,理想类群的$p$-部分在反气旋原子$\mathbb的有限子延拓上是有界的{Z}_q$-$K$的扩展。设$F$是一个数域,设$a_{/F}$是带有$a[p]\substeqA(F)$的阿贝尔变种。我们给出了$A$的精细Selmer群的$p$-部分在$\mathbb的有限子扩张上的充分条件{Z}_q$-扩展$F$以稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Arithmetica
Acta Arithmetica 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
64
审稿时长
4-8 weeks
期刊介绍: The journal publishes papers on the Theory of Numbers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信