On countably perfectly meager and countably perfectly null sets

IF 0.6 2区 数学 Q2 LOGIC
Tomasz Weiss , Piotr Zakrzewski
{"title":"On countably perfectly meager and countably perfectly null sets","authors":"Tomasz Weiss ,&nbsp;Piotr Zakrzewski","doi":"10.1016/j.apal.2023.103357","DOIUrl":null,"url":null,"abstract":"<div><p>We study a strengthening of the notion of a universally meager set and its dual counterpart that strengthens the notion of a universally null set.</p><p>We say that a subset <em>A</em> of a perfect Polish space <em>X</em> is countably perfectly meager (respectively, countably perfectly null) in <em>X</em>, if for every perfect Polish topology <em>τ</em> on <em>X</em>, giving the original Borel structure of <em>X</em>, <em>A</em> is covered by an <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>σ</mi></mrow></msub></math></span>-set <em>F</em> in <em>X</em> with the original Polish topology such that <em>F</em> is meager with respect to <em>τ</em> (respectively, for every finite, non-atomic, Borel measure <em>μ</em> on <em>X</em>, <em>A</em> is covered by an <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>σ</mi></mrow></msub></math></span>-set <em>F</em> in <em>X</em> with <span><math><mi>μ</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>).</p><p>We prove that if <span><math><msup><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msup><mo>≤</mo><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, then there exists a universally meager set in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></msup></math></span> which is not countably perfectly meager in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></msup></math></span> (respectively, a universally null set in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></msup></math></span> which is not countably perfectly null in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></msup></math></span>).</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"175 1","pages":"Article 103357"},"PeriodicalIF":0.6000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007223001148","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

We study a strengthening of the notion of a universally meager set and its dual counterpart that strengthens the notion of a universally null set.

We say that a subset A of a perfect Polish space X is countably perfectly meager (respectively, countably perfectly null) in X, if for every perfect Polish topology τ on X, giving the original Borel structure of X, A is covered by an Fσ-set F in X with the original Polish topology such that F is meager with respect to τ (respectively, for every finite, non-atomic, Borel measure μ on X, A is covered by an Fσ-set F in X with μ(F)=0).

We prove that if 202, then there exists a universally meager set in 2N which is not countably perfectly meager in 2N (respectively, a universally null set in 2N which is not countably perfectly null in 2N).

关于可数完全贫乏集和可数完全空集
我们研究了对普遍贫乏集概念的强化及其对偶对偶强化了普遍零集的概念。我们说一个完美的波兰空间X是一个子集可数完美的(可数完美零)分别在X,如果每一个完美的波兰拓扑τX, X的原始波莱尔结构,是由一个Fσ集F在X与原波兰拓扑,F是微薄对τ(分别为每一个有限的、非原子波莱尔测量μX,覆盖着一个Fσ组XμF (F) = 0)。证明了如果2≤2,则在2N中存在一个在2N中不可数完全贫乏的普遍贫乏集(即在2N中存在一个在2N中不可数完全贫乏的普遍零集)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信