A Hybrid Learning Particle Swarm Optimization With Fuzzy Logic for Sentiment Classification Problems

Pub Date : 2022-01-01 DOI:10.4018/ijcini.314782
Jiyuan Wang, Kaiyue Wang, X. Yan, Chanjuan Wang
{"title":"A Hybrid Learning Particle Swarm Optimization With Fuzzy Logic for Sentiment Classification Problems","authors":"Jiyuan Wang, Kaiyue Wang, X. Yan, Chanjuan Wang","doi":"10.4018/ijcini.314782","DOIUrl":null,"url":null,"abstract":"Methods based on deep learning have great utility in the current field of sentiment classification. To better optimize the setting of hyper-parameters in deep learning, a hybrid learning particle swarm optimization with fuzzy logic (HLPSO-FL) is proposed in this paper. Hybrid learning strategies are divided into mainstream learning strategies and random learning strategies. The mainstream learning strategy is to define the mainstream particles in the cluster and build a scale-free network through the mainstream particles. The random learning strategy makes full use of historical information and speeds up the convergence of the algorithm. Furthermore, fuzzy logic is used to control algorithm parameters to balance algorithm exploration and exploration performance. HLPSO-FL has completed comparison experiments on benchmark functions and real sentiment classification problems respectively. The experimental results show that HLPSO-FL can effectively complete the hyperparameter optimization of sentiment classification problem in deep learning and has strong convergence.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.314782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Methods based on deep learning have great utility in the current field of sentiment classification. To better optimize the setting of hyper-parameters in deep learning, a hybrid learning particle swarm optimization with fuzzy logic (HLPSO-FL) is proposed in this paper. Hybrid learning strategies are divided into mainstream learning strategies and random learning strategies. The mainstream learning strategy is to define the mainstream particles in the cluster and build a scale-free network through the mainstream particles. The random learning strategy makes full use of historical information and speeds up the convergence of the algorithm. Furthermore, fuzzy logic is used to control algorithm parameters to balance algorithm exploration and exploration performance. HLPSO-FL has completed comparison experiments on benchmark functions and real sentiment classification problems respectively. The experimental results show that HLPSO-FL can effectively complete the hyperparameter optimization of sentiment classification problem in deep learning and has strong convergence.
分享
查看原文
基于模糊逻辑的混合学习粒子群算法在情感分类中的应用
基于深度学习的方法在当前情感分类领域具有很大的实用性。为了更好地优化深度学习中的超参数设置,本文提出了一种模糊逻辑混合学习粒子群优化算法(HLPSO-FL)。混合学习策略分为主流学习策略和随机学习策略。主流学习策略是定义集群中的主流粒子,并通过主流粒子构建无标度网络。随机学习策略充分利用了历史信息,加快了算法的收敛速度。此外,模糊逻辑用于控制算法参数,以平衡算法探索和探索性能。HLPSO-FL分别完成了基准函数和真实情感分类问题的比较实验。实验结果表明,HLPSO-FL可以有效地完成深度学习中情绪分类问题的超参数优化,并且具有较强的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信