Classification of Second Order Functional Differential Equations with Constant Coefficients to Solvable Lie Algebras

IF 0.4 Q4 MATHEMATICS
Jervin Zen Lobo, Y. S. Valaulikar
{"title":"Classification of Second Order Functional Differential Equations with Constant Coefficients to Solvable Lie Algebras","authors":"Jervin Zen Lobo, Y. S. Valaulikar","doi":"10.30495/JME.V0I0.1810","DOIUrl":null,"url":null,"abstract":"In this paper, we shall apply symmetry analysis to second order functional differential equations with constant coefficients. The determining equations of the admitted Lie group are constructed in a manner different from that of the existing literature for delay differential equations. We define the standard Lie bracket and make a complete classification of the second order linear functional differential equations with constant coefficients, to solvable Lie algebras. We also classify some second order non-linear functional differential equations with constant coefficients, to solvable Lie algebras.","PeriodicalId":43745,"journal":{"name":"Journal of Mathematical Extension","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Extension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30495/JME.V0I0.1810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we shall apply symmetry analysis to second order functional differential equations with constant coefficients. The determining equations of the admitted Lie group are constructed in a manner different from that of the existing literature for delay differential equations. We define the standard Lie bracket and make a complete classification of the second order linear functional differential equations with constant coefficients, to solvable Lie algebras. We also classify some second order non-linear functional differential equations with constant coefficients, to solvable Lie algebras.
二阶常系数泛函微分方程对可解李代数的分类
本文将对称性分析应用于常系数二阶泛函微分方程。允许李群的判定方程的构造方式不同于现有文献中关于延迟微分方程的判定方程。我们定义了标准李括号,并将常系数二阶线性泛函微分方程完全分类为可解李代数。我们还将一些二阶常系数非线性泛函微分方程分类为可解李代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
68
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信