{"title":"Do-it-yourself radiative cooler as a radiative cooling standard and cooling component for device design","authors":"Xin Huang, Jyotirmoy Mandal, A. Raman","doi":"10.1117/1.JPE.12.012112","DOIUrl":null,"url":null,"abstract":"Abstract. We demonstrate a simple, low-cost design of a selectively emissive radiative cooler using scotch tape and aluminum foil, which can be further augmented by higher quality metal deposition methods. This do-it-yourself radiative cooler achieves solar reflectance, long wavelength infrared emittance, and optical selectivity comparable to state-of-the art designs and is experimentally demonstrated as achieving a 7°C subambient temperature drop at night for the aluminized scotch tape and an average 2°C drop under a solar illumination of 965 W / m2 for the silvered scotch tape. In addition, an 11°C subambient temperature drop at night for the aluminized scotch tape was obtained when a convection shield was used. Detailed optical properties are presented for an ultrawide wavelength range and a ∼2π angle of emittance. Given its ease of fabrication and performance, we propose this set of materials as a control for future radiative cooling experiments and an effective radiative cooling accessory for passive cooling designs.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"12 1","pages":"012112 - 012112"},"PeriodicalIF":1.5000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photonics for Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.JPE.12.012112","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract. We demonstrate a simple, low-cost design of a selectively emissive radiative cooler using scotch tape and aluminum foil, which can be further augmented by higher quality metal deposition methods. This do-it-yourself radiative cooler achieves solar reflectance, long wavelength infrared emittance, and optical selectivity comparable to state-of-the art designs and is experimentally demonstrated as achieving a 7°C subambient temperature drop at night for the aluminized scotch tape and an average 2°C drop under a solar illumination of 965 W / m2 for the silvered scotch tape. In addition, an 11°C subambient temperature drop at night for the aluminized scotch tape was obtained when a convection shield was used. Detailed optical properties are presented for an ultrawide wavelength range and a ∼2π angle of emittance. Given its ease of fabrication and performance, we propose this set of materials as a control for future radiative cooling experiments and an effective radiative cooling accessory for passive cooling designs.
摘要我们展示了一种简单,低成本的设计,选择性发射辐射冷却器使用透明胶带和铝箔,可以通过更高质量的金属沉积方法进一步增强。这款自制辐射冷却器实现了与最先进设计相当的太阳反射率、长波红外发射率和光学选择性,实验证明,镀铝透明胶带在夜间可实现7°C的亚环境温度下降,镀银透明胶带在965 W / m2的太阳光照下可实现2°C的平均下降。此外,当使用对流屏蔽时,镀铝透明胶带的夜间亚环境温度下降了11°C。详细的光学性质给出了超宽波长范围和发射角~ 2π。鉴于其易于制造和性能,我们提出这组材料作为未来辐射冷却实验的控制和被动冷却设计的有效辐射冷却附件。
期刊介绍:
The Journal of Photonics for Energy publishes peer-reviewed papers covering fundamental and applied research areas focused on the applications of photonics for renewable energy harvesting, conversion, storage, distribution, monitoring, consumption, and efficient usage.