Convergence of the Incremental Projection Method Using Conforming Approximations

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
R. Eymard, David Maltese
{"title":"Convergence of the Incremental Projection Method Using Conforming Approximations","authors":"R. Eymard, David Maltese","doi":"10.48550/arXiv.2302.06240","DOIUrl":null,"url":null,"abstract":"Abstract We prove the convergence of an incremental projection numerical scheme for the time-dependent incompressible Navier–Stokes equations, without any regularity assumption on the weak solution. The velocity and the pressure are discretized in conforming spaces, whose compatibility is ensured by the existence of an interpolator for regular functions which preserves approximate divergence-free properties. Owing to a priori estimates, we get the existence and uniqueness of the discrete approximation. Compactness properties are then proved, relying on a Lions-like lemma for time translate estimates. It is then possible to show the convergence of the approximate solution to a weak solution of the problem. The construction of the interpolator is detailed in the case of the lowest degree Taylor–Hood finite element.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.06240","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We prove the convergence of an incremental projection numerical scheme for the time-dependent incompressible Navier–Stokes equations, without any regularity assumption on the weak solution. The velocity and the pressure are discretized in conforming spaces, whose compatibility is ensured by the existence of an interpolator for regular functions which preserves approximate divergence-free properties. Owing to a priori estimates, we get the existence and uniqueness of the discrete approximation. Compactness properties are then proved, relying on a Lions-like lemma for time translate estimates. It is then possible to show the convergence of the approximate solution to a weak solution of the problem. The construction of the interpolator is detailed in the case of the lowest degree Taylor–Hood finite element.
保形近似增量投影法的收敛性
摘要我们证明了含时不可压缩Navier-Stokes方程的增量投影数值格式的收敛性,在弱解上没有任何正则性假设。速度和压力在相容空间中离散化,其相容性通过正则函数的插值器的存在来确保,该插值器保持近似的无发散特性。由于先验估计,我们得到了离散逼近的存在性和唯一性。然后证明了紧性性质,依赖于时间平移估计的Lions样引理。这样就可以证明问题的近似解对弱解的收敛性。插值器的构造在最低阶Taylor–Hood有限元的情况下进行了详细说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信