Nanomolded buried light-scattering (BLiS) back-reflectors using dielectric nanoparticles for light harvesting in thin-film silicon solar cells

IF 1.9 Q3 PHYSICS, APPLIED
D. Desta, R. Rizzoli, C. Summonte, R. Pereira, A. Larsen, P. Balling, S. Ram
{"title":"Nanomolded buried light-scattering (BLiS) back-reflectors using dielectric nanoparticles for light harvesting in thin-film silicon solar cells","authors":"D. Desta, R. Rizzoli, C. Summonte, R. Pereira, A. Larsen, P. Balling, S. Ram","doi":"10.1051/epjpv/2019011","DOIUrl":null,"url":null,"abstract":"The article presents a nanoparticle-based buried light-scattering (BLiS) back-reflector design realized through a simplified nanofabrication technique for the purpose of light-management in solar cells. The BLiS structure consists of a flat silver back-reflector with an overlying light-scattering bilayer which is made of a TiO2 dielectric nanoparticles layer with micron-sized inverted pyramidal cavities, buried under a flat-topped silicon nanoparticles layer. The optical properties of this BLiS back-reflector show high broadband and wide angular distribution of diffuse light-scattering. The efficient light-scattering by the buried inverted pyramid back-reflector is shown to effectively improve the short-circuit-current density and efficiency of the overlying n-i-p amorphous silicon solar cells up to 14% and 17.5%, respectively, compared to the reference flat solar cells. A layer of TiO2 nanoparticles with exposed inverted pyramid microstructures shows equivalent light scattering but poor fill factors in the solar cells, indicating that the overlying smooth growth interface in the BLiS back-reflector helps to maintain a good fill factor. The study demonstrates the advantage of spatial separation of the light-trapping and the semiconductor growth layers in the photovoltaic back-reflector without sacrificing the optical benefit.","PeriodicalId":42768,"journal":{"name":"EPJ Photovoltaics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/epjpv/2019011","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Photovoltaics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjpv/2019011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

The article presents a nanoparticle-based buried light-scattering (BLiS) back-reflector design realized through a simplified nanofabrication technique for the purpose of light-management in solar cells. The BLiS structure consists of a flat silver back-reflector with an overlying light-scattering bilayer which is made of a TiO2 dielectric nanoparticles layer with micron-sized inverted pyramidal cavities, buried under a flat-topped silicon nanoparticles layer. The optical properties of this BLiS back-reflector show high broadband and wide angular distribution of diffuse light-scattering. The efficient light-scattering by the buried inverted pyramid back-reflector is shown to effectively improve the short-circuit-current density and efficiency of the overlying n-i-p amorphous silicon solar cells up to 14% and 17.5%, respectively, compared to the reference flat solar cells. A layer of TiO2 nanoparticles with exposed inverted pyramid microstructures shows equivalent light scattering but poor fill factors in the solar cells, indicating that the overlying smooth growth interface in the BLiS back-reflector helps to maintain a good fill factor. The study demonstrates the advantage of spatial separation of the light-trapping and the semiconductor growth layers in the photovoltaic back-reflector without sacrificing the optical benefit.
使用介电纳米颗粒在薄膜硅太阳能电池中进行光收集的纳米成型埋式光散射(BLiS)背反射器
本文提出了一种基于纳米颗粒的掩埋光散射(BLiS)背反射器设计,该设计通过简化的纳米制造技术实现,用于太阳能电池中的光管理。BLiS结构由一个平坦的银背反射器和一个覆盖的光散射双层组成,该双层由TiO2介电纳米颗粒层制成,该层具有微米大小的倒金字塔形空腔,埋在平顶硅纳米颗粒层下。这种BLiS背反射器的光学特性显示出高宽带和宽的散射光角度分布。与参考平面太阳能电池相比,埋入式倒金字塔背反射器的有效光散射可有效地将上覆n-i-p非晶硅太阳能电池的短路电流密度和效率分别提高到14%和17.5%。具有暴露的倒金字塔微观结构的TiO2纳米颗粒层在太阳能电池中显示出等效的光散射,但填充因子较差,这表明BLiS背反射器中覆盖的平滑生长界面有助于保持良好的填充因子。该研究证明了在不牺牲光学效益的情况下,光伏背反射器中的光捕获层和半导体生长层在空间上分离的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Photovoltaics
EPJ Photovoltaics PHYSICS, APPLIED-
CiteScore
2.30
自引率
4.00%
发文量
15
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信