Equilibrium perturbations for stochastic interacting systems

IF 1.3 3区 数学 Q2 STATISTICS & PROBABILITY
Lu Xu, Linjie Zhao
{"title":"Equilibrium perturbations for stochastic interacting systems","authors":"Lu Xu, Linjie Zhao","doi":"10.1214/22-ejp900","DOIUrl":null,"url":null,"abstract":"We consider the equilibrium perturbations for two stochastic systems: the $d$-dimensional generalized exclusion process and the one-dimensional chain of anharmonic oscillators. We add a perturbation of order $N^{-\\alpha}$ to the equilibrium profile and speed up the process by $N^{1+\\kappa}$ for parameters $0<\\kappa\\le\\alpha$. Under some additional constraints on $\\kappa$ and $\\alpha$, we show the perturbed quantities evolve according to the Burgers equation in the exclusion process, and to two decoupled Burgers equations in the anharmonic chain, both in the smooth regime.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ejp900","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the equilibrium perturbations for two stochastic systems: the $d$-dimensional generalized exclusion process and the one-dimensional chain of anharmonic oscillators. We add a perturbation of order $N^{-\alpha}$ to the equilibrium profile and speed up the process by $N^{1+\kappa}$ for parameters $0<\kappa\le\alpha$. Under some additional constraints on $\kappa$ and $\alpha$, we show the perturbed quantities evolve according to the Burgers equation in the exclusion process, and to two decoupled Burgers equations in the anharmonic chain, both in the smooth regime.
随机相互作用系统的平衡摄动
我们考虑了两个随机系统的平衡扰动:$d$维广义排斥过程和一维非谐振荡器链。我们将$N^{-\alpha}$阶的扰动添加到平衡轮廓中,并将参数$0<\alpha\le\alpha$的过程加速$N^{1+\alpha}$。在$kappa$和$\alpha$上的一些附加约束下,我们证明了扰动量在排除过程中根据Burgers方程演化,在非调和链中根据两个解耦的Burgers方程式演化,这两个方程都在光滑状态下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信