Outer Connected Domination in Maximal Outerplanar Graphs and Beyond

IF 0.5 4区 数学 Q3 MATHEMATICS
Wei Yang, Baoyindureng Wu
{"title":"Outer Connected Domination in Maximal Outerplanar Graphs and Beyond","authors":"Wei Yang, Baoyindureng Wu","doi":"10.7151/dmgt.2462","DOIUrl":null,"url":null,"abstract":"Abstract A set S of vertices in a graph G is an outer connected dominating set of G if every vertex in V \\ S is adjacent to a vertex in S and the subgraph induced by V \\ S is connected. The outer connected domination number of G, denoted by γ˜c(G) {\\tilde \\gamma _c}\\left( G \\right) , is the minimum cardinality of an outer connected dominating set of G. Zhuang [Domination and outer connected domination in maximal outerplanar graphs, Graphs Combin. 37 (2021) 2679–2696] recently proved that γ˜c(G)≤⌊ n+k4 ⌋ {\\tilde \\gamma _c}\\left( G \\right) \\le \\left\\lfloor {{{n + k} \\over 4}} \\right\\rfloor for any maximal outerplanar graph G of order n ≥ 3 with k vertices of degree 2 and posed a conjecture which states that G is a striped maximal outerplanar graph with γ˜c(G)≤⌊ n+24 ⌋ {\\tilde \\gamma _c}\\left( G \\right) \\le \\left\\lfloor {{{n + 2} \\over 4}} \\right\\rfloor if and only if G ∈ 𝒜, where 𝒜 consists of six special families of striped outerplanar graphs. We disprove the conjecture. Moreover, we show that the conjecture become valid under some additional property to the striped maximal outerplanar graphs. In addition, we extend the above theorem of Zhuang to all maximal K2,3-minor free graphs without K4 and all K4-minor free graphs.","PeriodicalId":48875,"journal":{"name":"Discussiones Mathematicae Graph Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2462","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A set S of vertices in a graph G is an outer connected dominating set of G if every vertex in V \ S is adjacent to a vertex in S and the subgraph induced by V \ S is connected. The outer connected domination number of G, denoted by γ˜c(G) {\tilde \gamma _c}\left( G \right) , is the minimum cardinality of an outer connected dominating set of G. Zhuang [Domination and outer connected domination in maximal outerplanar graphs, Graphs Combin. 37 (2021) 2679–2696] recently proved that γ˜c(G)≤⌊ n+k4 ⌋ {\tilde \gamma _c}\left( G \right) \le \left\lfloor {{{n + k} \over 4}} \right\rfloor for any maximal outerplanar graph G of order n ≥ 3 with k vertices of degree 2 and posed a conjecture which states that G is a striped maximal outerplanar graph with γ˜c(G)≤⌊ n+24 ⌋ {\tilde \gamma _c}\left( G \right) \le \left\lfloor {{{n + 2} \over 4}} \right\rfloor if and only if G ∈ 𝒜, where 𝒜 consists of six special families of striped outerplanar graphs. We disprove the conjecture. Moreover, we show that the conjecture become valid under some additional property to the striped maximal outerplanar graphs. In addition, we extend the above theorem of Zhuang to all maximal K2,3-minor free graphs without K4 and all K4-minor free graphs.
极大外平面图及其以外的外连通支配
如果V S中的每个顶点与S中的一个顶点相邻,且由V S引生的子图是连通的,则图G中的顶点集S是G的外连通支配集。G的外连通支配数,用γ ~ c(G)表示 {\tilde \gamma _c}\left(g) \right),是G.庄的一个外连通支配集的最小基数[最大外平面图中的支配和外连通支配,图组合,37(2021)2679-2696]最近证明了γ ~ c(G)≤⌊n+k4⌋ {\tilde \gamma _c}\left(g) \right) \le \left\lfloor {{{N + k} \over 4}} \right\rfloor 对于任意n≥3阶、k个顶点为2度的极大外平面图G,提出了一个猜想,说明G是一个γ ~ c(G)≤⌊n+24⌋的条纹极大外平面图 {\tilde \gamma _c}\left(g) \right) \le \left\lfloor {{{N + 2} \over 4}} \right\rfloor 当且仅当G∈φ,其中φ由6个特殊的条纹外平面图族组成。我们推翻了这个猜想。此外,我们还证明了在条纹极大外平面图的一些附加性质下,这个猜想是成立的。此外,我们将庄的上述定理推广到所有极大K2图、没有K4的3次自由图和所有K4次自由图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
22
审稿时长
53 weeks
期刊介绍: The Discussiones Mathematicae Graph Theory publishes high-quality refereed original papers. Occasionally, very authoritative expository survey articles and notes of exceptional value can be published. The journal is mainly devoted to the following topics in Graph Theory: colourings, partitions (general colourings), hereditary properties, independence and domination, structures in graphs (sets, paths, cycles, etc.), local properties, products of graphs as well as graph algorithms related to these topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信