A real-time monitoring approach for bivariate event data

IF 1.3 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Inez Maria Zwetsloot, Tahir Mahmood, Funmilola Mary Taiwo, Zezhong Wang
{"title":"A real-time monitoring approach for bivariate event data","authors":"Inez Maria Zwetsloot,&nbsp;Tahir Mahmood,&nbsp;Funmilola Mary Taiwo,&nbsp;Zezhong Wang","doi":"10.1002/asmb.2800","DOIUrl":null,"url":null,"abstract":"<p>Early detection of changes in the frequency of events is an important task in many fields, such as disease surveillance, monitoring of high-quality processes, reliability monitoring, and public health. This article focuses on detecting changes in multivariate event data by monitoring the time-between-events (TBE). Existing multivariate TBE charts are limited because they only signal after an event occurred for each of the individual processes. This results in delays (i.e., long time-to-signal), especially when we are interested in detecting a change in one or a few processes with different rates. We propose a bivariate TBE chart, which can signal in real-time. We derive analytical expressions for the control limits and average time-to-signal performance, conduct a performance evaluation and compare our chart to an existing method. Our findings showed that our method is an effective approach for monitoring bivariate TBE data and has better detection ability than the existing method under transient shifts and is more generally applicable. A significant benefit of our method is that it signals in real-time and that the control limits are based on analytical expressions. The proposed method is implemented on two real-life datasets from reliability and health surveillance.</p>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2800","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

Early detection of changes in the frequency of events is an important task in many fields, such as disease surveillance, monitoring of high-quality processes, reliability monitoring, and public health. This article focuses on detecting changes in multivariate event data by monitoring the time-between-events (TBE). Existing multivariate TBE charts are limited because they only signal after an event occurred for each of the individual processes. This results in delays (i.e., long time-to-signal), especially when we are interested in detecting a change in one or a few processes with different rates. We propose a bivariate TBE chart, which can signal in real-time. We derive analytical expressions for the control limits and average time-to-signal performance, conduct a performance evaluation and compare our chart to an existing method. Our findings showed that our method is an effective approach for monitoring bivariate TBE data and has better detection ability than the existing method under transient shifts and is more generally applicable. A significant benefit of our method is that it signals in real-time and that the control limits are based on analytical expressions. The proposed method is implemented on two real-life datasets from reliability and health surveillance.

一种双变量事件数据的实时监测方法
早期发现事件发生频率的变化是一项重要任务,例如在疾病监测、高质量过程监测、可靠性监测和公共卫生等领域。在本文中,我们将重点关注通过监视事件间隔时间(TBE)来检测多变量事件数据中的变化。现有的多变量TBE图表在某种意义上是有限的,它们只在每个单独的流程发生事件后发出信号。这会导致延迟(即,发出信号的时间很长),特别是在检测一个或几个进程中的变化时。我们提出了一种能够实时发出信号的双变量TBE (BTBE)图。我们推导了控制极限和平均信号时间性能的解析表达式,进行了性能评估,并将我们的图表与现有方法进行了比较。研究结果表明,该方法是监测双变量事件间隔时间数据的一种现实方法,并且比现有方法具有更好的检测能力。我们的方法的一个很大的好处是,它的信号是实时的,由于解析表达式不需要模拟。该方法在一个与艾滋病相关的真实数据集上实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process. The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信