One-matrix differential reformulation of two-matrix models

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
J. Brunekreef, L. Lionni, Johannes Thurigen
{"title":"One-matrix differential reformulation of two-matrix models","authors":"J. Brunekreef, L. Lionni, Johannes Thurigen","doi":"10.1142/S0129055X2250026X","DOIUrl":null,"url":null,"abstract":"Differential reformulations of field theories are often used for explicit computations. We derive a one-matrix differential formulation of two-matrix models, with the help of which it is possible to diagonalize the one- and two-matrix models using a formula by Itzykson and Zuber that allows diagonalizing differential operators with respect to matrix elements of Hermitian matrices. We detail the equivalence between the expressions obtained by diagonalizing the partition function in differential or integral formulation, which is not manifest at first glance. For one-matrix models, this requires transforming certain derivatives to variables. In the case of two-matrix models, the same computation leads to a new determinant formulation of the partition function, and we discuss potential applications to new orthogonal polynomials methods.","PeriodicalId":54483,"journal":{"name":"Reviews in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S0129055X2250026X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Differential reformulations of field theories are often used for explicit computations. We derive a one-matrix differential formulation of two-matrix models, with the help of which it is possible to diagonalize the one- and two-matrix models using a formula by Itzykson and Zuber that allows diagonalizing differential operators with respect to matrix elements of Hermitian matrices. We detail the equivalence between the expressions obtained by diagonalizing the partition function in differential or integral formulation, which is not manifest at first glance. For one-matrix models, this requires transforming certain derivatives to variables. In the case of two-matrix models, the same computation leads to a new determinant formulation of the partition function, and we discuss potential applications to new orthogonal polynomials methods.
双矩阵模型的单矩阵微分重表述
场理论的不同表述通常用于显式计算。我们导出了两个矩阵模型的单矩阵差分公式,借助该公式,可以使用Itzykson和Zuber的公式对一和两个矩阵模式进行对角化,该公式允许对埃尔米特矩阵的矩阵元素的差分算子进行对角化。我们详细说明了通过对微分或积分公式中的配分函数进行对角化而获得的表达式之间的等价性,这一点乍一看并不明显。对于单矩阵模型,这需要将某些导数转换为变量。在两个矩阵模型的情况下,相同的计算导致了配分函数的一个新的行列式公式,我们讨论了新的正交多项式方法的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reviews in Mathematical Physics
Reviews in Mathematical Physics 物理-物理:数学物理
CiteScore
3.00
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: Reviews in Mathematical Physics fills the need for a review journal in the field, but also accepts original research papers of high quality. The review papers - introductory and survey papers - are of relevance not only to mathematical physicists, but also to mathematicians and theoretical physicists interested in interdisciplinary topics. Original research papers are not subject to page limitations provided they are of importance to this readership. It is desirable that such papers have an expository part understandable to a wider readership than experts. Papers with the character of a scientific letter are usually not suitable for RMP.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信