APPLICATION OF HOMOTOPY ANALYSIS METHOD (HAM) TO THE NON-LINEAR KDV EQUATIONS

Q3 Mathematics
A. Chauhan, R. Arora
{"title":"APPLICATION OF HOMOTOPY ANALYSIS METHOD (HAM) TO THE NON-LINEAR KDV EQUATIONS","authors":"A. Chauhan, R. Arora","doi":"10.46298/cm.10336","DOIUrl":null,"url":null,"abstract":"In this work, approximate analytic solutions for different types of KdV equations are obtained using the homotopy analysis method (HAM). The convergence control parameter h helps us to adjust the convergence region of the approximate analytic solutions. The solutions are obtained in the form of power series. The obtained solutions and the exact solutions are shown graphically, highlighting the effects of non-linearity. We have compared the approximate analytical results which are determined by HAM, with the exact solutions and shown graphically with their absolute errors. By choosing an appropriate value of the convergence control parameter, we can obtain the solution in few iterations. All the computations have been performed using the software package MATHEMATICA.","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.10336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, approximate analytic solutions for different types of KdV equations are obtained using the homotopy analysis method (HAM). The convergence control parameter h helps us to adjust the convergence region of the approximate analytic solutions. The solutions are obtained in the form of power series. The obtained solutions and the exact solutions are shown graphically, highlighting the effects of non-linearity. We have compared the approximate analytical results which are determined by HAM, with the exact solutions and shown graphically with their absolute errors. By choosing an appropriate value of the convergence control parameter, we can obtain the solution in few iterations. All the computations have been performed using the software package MATHEMATICA.
同伦分析方法在非线性KDV方程中的应用
本文利用同伦分析方法,得到了不同类型KdV方程的近似解析解。收敛控制参数h帮助我们调整近似解析解的收敛区域。解以幂级数的形式得到。得到的解和精确解用图形表示,突出了非线性的影响。我们将由HAM确定的近似解析结果与精确解进行了比较,并用图形表示了它们的绝对误差。通过选择合适的收敛控制参数值,可以在较短的迭代时间内得到解。所有的计算都是用MATHEMATICA软件进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematics
Communications in Mathematics Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
26
审稿时长
45 weeks
期刊介绍: Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信