On the realization of explicit Runge-Kutta schemes preserving quadratic invariants of dynamical systems

Yu Ying, Ин Юй, M. Malykh, М Д Малых
{"title":"On the realization of explicit Runge-Kutta schemes preserving quadratic invariants of dynamical systems","authors":"Yu Ying, Ин Юй, M. Malykh, М Д Малых","doi":"10.22363/2658-4670-2020-28-4-327-345","DOIUrl":null,"url":null,"abstract":"We implement several explicit Runge-Kutta schemes that preserve quadratic invariants of autonomous dynamical systems in Sage. In this paper, we want to present our package ex.sage and the results of our numerical experiments. In the package, the functions rrk_solve, idt_solve and project_1 are constructed for the case when only one given quadratic invariant will be exactly preserved. The function phi_solve_1 allows us to preserve two specified quadratic invariants simultaneously. To solve the equations with respect to parameters determined by the conservation law we use the elimination technique based on Grbner basis implemented in Sage. An elliptic oscillator is used as a test example of the presented package. This dynamical system has two quadratic invariants. Numerical results of the comparing of standard explicit Runge-Kutta method RK(4,4) with rrk_solve are presented. In addition, for the functions rrk_solve and idt_solve, that preserve only one given invariant, we investigated the change of the second quadratic invariant of the elliptic oscillator. In conclusion, the drawbacks of using these schemes are discussed.","PeriodicalId":34192,"journal":{"name":"Discrete and Continuous Models and Applied Computational Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Models and Applied Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22363/2658-4670-2020-28-4-327-345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We implement several explicit Runge-Kutta schemes that preserve quadratic invariants of autonomous dynamical systems in Sage. In this paper, we want to present our package ex.sage and the results of our numerical experiments. In the package, the functions rrk_solve, idt_solve and project_1 are constructed for the case when only one given quadratic invariant will be exactly preserved. The function phi_solve_1 allows us to preserve two specified quadratic invariants simultaneously. To solve the equations with respect to parameters determined by the conservation law we use the elimination technique based on Grbner basis implemented in Sage. An elliptic oscillator is used as a test example of the presented package. This dynamical system has two quadratic invariants. Numerical results of the comparing of standard explicit Runge-Kutta method RK(4,4) with rrk_solve are presented. In addition, for the functions rrk_solve and idt_solve, that preserve only one given invariant, we investigated the change of the second quadratic invariant of the elliptic oscillator. In conclusion, the drawbacks of using these schemes are discussed.
保持动力系统二次不变量的显式龙格-库塔格式的实现
我们在Sage中实现了几个保持自主动力系统二次不变量的显式Runge-Kutta格式。在本文中,我们想介绍我们的封装方法和我们的数值实验结果。在包中,函数rrk_solve、idt_solve和project_1是为只保留一个给定的二次不变式的情况构造的。函数phi_solve_1允许我们同时保留两个指定的二次不变量。为了求解由守恒定律确定的参数的方程,我们使用了Sage实现的基于Grbner基的消去技术。以一个椭圆振荡器作为测试实例。这个动力系统有两个二次不变量。给出了标准显式龙格-库塔方法RK(4,4)与rrk_solve的数值比较结果。此外,对于只保留一个给定不变量的函数rrk_solve和idt_solve,我们研究了椭圆振子的第二个二次不变量的变化。最后,讨论了使用这些方案的缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
20
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信