Normal form for lower dimensional elliptic tori in Hamiltonian systems

IF 1.4 4区 工程技术 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Chiara Caracciolo
{"title":"Normal form for lower dimensional elliptic tori in Hamiltonian systems","authors":"Chiara Caracciolo","doi":"10.3934/mine.2022051","DOIUrl":null,"url":null,"abstract":"We give a proof of the convergence of an algorithm for the construction of lower dimensional elliptic tori in nearly integrable Hamiltonian systems. The existence of such invariant tori is proved by leading the Hamiltonian to a suitable normal form. In particular, we adapt the procedure described in a previous work by Giorgilli and co-workers, where the construction was made so as to be used in the context of the planetary problem. We extend the proof of the convergence to the cases in which the two sets of frequencies, describing the motion along the torus and the transverse oscillations, have the same order of magnitude.","PeriodicalId":54213,"journal":{"name":"Mathematics in Engineering","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2022051","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

Abstract

We give a proof of the convergence of an algorithm for the construction of lower dimensional elliptic tori in nearly integrable Hamiltonian systems. The existence of such invariant tori is proved by leading the Hamiltonian to a suitable normal form. In particular, we adapt the procedure described in a previous work by Giorgilli and co-workers, where the construction was made so as to be used in the context of the planetary problem. We extend the proof of the convergence to the cases in which the two sets of frequencies, describing the motion along the torus and the transverse oscillations, have the same order of magnitude.
哈密顿系统中低维椭圆环面的范式
我们证明了在几乎可积的哈密顿系统中构造低维椭圆环面的一个算法的收敛性。通过将哈密顿量引入一个合适的正规形式,证明了这种不变复曲面的存在。特别是,我们采用了Giorgilli及其同事在以前的工作中描述的程序,在那里进行了构造,以便在行星问题的背景下使用。我们将收敛性的证明扩展到描述沿环面运动和横向振荡的两组频率具有相同数量级的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics in Engineering
Mathematics in Engineering MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.20
自引率
0.00%
发文量
64
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信