An introduction to Eisenstein measures

IF 0.3 4区 数学 Q4 MATHEMATICS
E. Eischen
{"title":"An introduction to Eisenstein measures","authors":"E. Eischen","doi":"10.5802/jtnb.1178","DOIUrl":null,"url":null,"abstract":"This paper provides an introduction to Eisenstein measures, a powerful tool for constructing certain $p$-adic $L$-functions. First seen in Serre's realization of $p$-adic Dedekind zeta functions associated to totally real fields, Eisenstein measures provide a way to extend the style of congruences Kummer observed for values of the Riemann zeta function (so-called {\\em Kummer congruences}) to certain other $L$-functions. In addition to tracing key developments, we discuss some challenges that arise in more general settings, concluding with some that remain open.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1178","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

This paper provides an introduction to Eisenstein measures, a powerful tool for constructing certain $p$-adic $L$-functions. First seen in Serre's realization of $p$-adic Dedekind zeta functions associated to totally real fields, Eisenstein measures provide a way to extend the style of congruences Kummer observed for values of the Riemann zeta function (so-called {\em Kummer congruences}) to certain other $L$-functions. In addition to tracing key developments, we discuss some challenges that arise in more general settings, concluding with some that remain open.
爱森斯坦测量方法简介
本文介绍了构造某些$p$-一元$L$-函数的有力工具——爱森斯坦测度。在Serre实现与全实数域相关的$p$-adic Dedekind zeta函数时,爱森斯坦测度提供了一种将Kummer观察到的黎曼zeta函数值的同余风格(所谓的{\em Kummer同余})扩展到某些其他$L$-函数的方法。除了追踪关键的发展之外,我们还讨论了在更一般的环境中出现的一些挑战,并总结了一些仍然开放的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信