Evaluation of simulated responses to climate forcings: a flexible statistical framework using confirmatory factor analysis and structural equation modelling – Part 1: Theory

Q1 Mathematics
Katarina Lashgari, G. Brattström, A. Moberg, R. Sundberg
{"title":"Evaluation of simulated responses to climate forcings: a flexible statistical framework using confirmatory factor analysis and structural equation modelling – Part 1: Theory","authors":"Katarina Lashgari, G. Brattström, A. Moberg, R. Sundberg","doi":"10.5194/ascmo-8-225-2022","DOIUrl":null,"url":null,"abstract":"Abstract. Evaluation of climate model simulations is a crucial task in climate research. Here, a new\nstatistical framework is proposed for evaluation of simulated temperature responses\nto climate forcings against temperature reconstructions derived from climate proxy data for\nthe last millennium. The framework includes two types of statistical models, each of which is\nbased on the concept of latent (unobservable)\nvariables: confirmatory factor analysis (CFA) models and structural equation modelling\n(SEM) models. Each statistical model presented is developed for use with data from a single region,\nwhich can be of any size. The ideas behind the framework arose partly from a statistical model\nused in many detection and attribution (D&A) studies.\nFocusing on climatological characteristics of\nfive specific forcings of natural and anthropogenic origin, the present work theoretically\nmotivates an extension of the statistical model used in D&A studies to CFA and SEM models,\nwhich allow, for example, for non-climatic noise in observational data without assuming\nthe additivity of the forcing effects.\nThe application of the ideas of CFA is exemplified in a small numerical study, whose aim was\nto check the assumptions typically placed on ensembles\nof climate model simulations when constructing mean sequences. The result of this study indicated\nthat some ensembles for some regions may not satisfy the assumptions in question.\n","PeriodicalId":36792,"journal":{"name":"Advances in Statistical Climatology, Meteorology and Oceanography","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Statistical Climatology, Meteorology and Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/ascmo-8-225-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. Evaluation of climate model simulations is a crucial task in climate research. Here, a new statistical framework is proposed for evaluation of simulated temperature responses to climate forcings against temperature reconstructions derived from climate proxy data for the last millennium. The framework includes two types of statistical models, each of which is based on the concept of latent (unobservable) variables: confirmatory factor analysis (CFA) models and structural equation modelling (SEM) models. Each statistical model presented is developed for use with data from a single region, which can be of any size. The ideas behind the framework arose partly from a statistical model used in many detection and attribution (D&A) studies. Focusing on climatological characteristics of five specific forcings of natural and anthropogenic origin, the present work theoretically motivates an extension of the statistical model used in D&A studies to CFA and SEM models, which allow, for example, for non-climatic noise in observational data without assuming the additivity of the forcing effects. The application of the ideas of CFA is exemplified in a small numerical study, whose aim was to check the assumptions typically placed on ensembles of climate model simulations when constructing mean sequences. The result of this study indicated that some ensembles for some regions may not satisfy the assumptions in question.
对气候强迫的模拟响应的评估:采用验证性因子分析和结构方程建模的灵活统计框架。第1部分:理论
摘要气候模型模拟的评估是气候研究中的一项关键任务。在这里,提出了一个新闻统计学框架,用于评估模拟温度对气候强迫的响应,以及根据上千年的气候代理数据进行的温度重建。该框架包括两种类型的统计模型,每种模型都基于潜在(不可观测)变量的概念:验证性因素分析(CFA)模型和结构方程模型(SEM)模型。所提供的每个统计模型都是为与来自单个区域的数据一起使用而开发的,该区域可以是任何大小的数据。该框架背后的想法部分源于许多检测和归因研究中使用的统计模型。本工作着眼于自然和人为成因的五种特定强迫的气候特征,从理论上推动了将D&A研究中使用的统计模型扩展到CFA和SEM模型,例如,这些模型允许在观测数据中使用非气候噪声,而不假设强迫效应的可加性。CFA思想的应用在一项小型数值研究中得到了例证,该研究的目的是在构建平均序列时检查气候模型模拟集合中通常存在的假设。这项研究的结果表明,某些地区的一些组合可能无法满足所讨论的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Statistical Climatology, Meteorology and Oceanography
Advances in Statistical Climatology, Meteorology and Oceanography Earth and Planetary Sciences-Atmospheric Science
CiteScore
4.80
自引率
0.00%
发文量
9
审稿时长
26 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信