Aggregation in Three Benzamide or Pyridylcarboxamide Hydrates: Formation of 1D Chains Comprising Water Molecules in a Chloro(pyridyl)benzamide Dihydrate

IF 0.7 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY
P. Mocilac, J. Gallagher, C. Jelsch
{"title":"Aggregation in Three Benzamide or Pyridylcarboxamide Hydrates: Formation of 1D Chains Comprising Water Molecules in a Chloro(pyridyl)benzamide Dihydrate","authors":"P. Mocilac, J. Gallagher, C. Jelsch","doi":"10.5562/CCA3347","DOIUrl":null,"url":null,"abstract":"Three benzamide hydrated derivatives as para-methyl-N-(3-pyridyl)benzamide monohydrate (I) or Mpm ∙ H2O; N-(3-fluorophenyl)-4pyridylcarboxamide monohydrate (II) or NpmF ∙ H2O and para-chloro-N-(3-pyridyl)benzamide dihydrate (III) or Clpm ∙ 2H2O are obtained from a series of crystallization experiments using a range of solvents to obtain polymorphs and solvates (hydrates). Most of the crystallization experiment attempts did not provide hydrates and yielded the starting parent crystalline materials. However, from the experiments, two benzamides, Mpm as a monohydrate and Clpm as a dihydrate were isolated and together with a carboxamide monohydrate as NpmF ∙ H2O are reported herein. The water molecules play a key role in crystal structure formation using classical hydrogen bonding via amide N–H∙∙∙OH2, O– H∙∙∙Npyridine and O–H∙∙∙O=C interactions. They compensate for the excess of strong hydrogen bonding acceptors over donors in the benzamide/pyridinecarboxamide molecules, by participating as O-H hydrogen bond donors twice and usually as an O acceptor once. In the Clpm dihydrate, both water molecules form hydrogen bonded chains along the a-axis direction. The lack of hydrate formation in the majority of related benzamides is presumably related to the relative hydrophobicity of these compounds.","PeriodicalId":10822,"journal":{"name":"Croatica Chemica Acta","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2018-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5562/CCA3347","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Croatica Chemica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.5562/CCA3347","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Three benzamide hydrated derivatives as para-methyl-N-(3-pyridyl)benzamide monohydrate (I) or Mpm ∙ H2O; N-(3-fluorophenyl)-4pyridylcarboxamide monohydrate (II) or NpmF ∙ H2O and para-chloro-N-(3-pyridyl)benzamide dihydrate (III) or Clpm ∙ 2H2O are obtained from a series of crystallization experiments using a range of solvents to obtain polymorphs and solvates (hydrates). Most of the crystallization experiment attempts did not provide hydrates and yielded the starting parent crystalline materials. However, from the experiments, two benzamides, Mpm as a monohydrate and Clpm as a dihydrate were isolated and together with a carboxamide monohydrate as NpmF ∙ H2O are reported herein. The water molecules play a key role in crystal structure formation using classical hydrogen bonding via amide N–H∙∙∙OH2, O– H∙∙∙Npyridine and O–H∙∙∙O=C interactions. They compensate for the excess of strong hydrogen bonding acceptors over donors in the benzamide/pyridinecarboxamide molecules, by participating as O-H hydrogen bond donors twice and usually as an O acceptor once. In the Clpm dihydrate, both water molecules form hydrogen bonded chains along the a-axis direction. The lack of hydrate formation in the majority of related benzamides is presumably related to the relative hydrophobicity of these compounds.
三种苯甲酰胺或吡啶甲酰胺水合物中的聚集:氯(吡啶基)苯甲酰胺二水合物中包含水分子的1D链的形成
三种苯酰胺水合衍生物对甲基- n -(3-吡啶基)苯酰胺一水合物(I)或Mpm∙H2O;N-(3-氟苯基)-4吡啶基甲酰胺一水合物(II)或NpmF∙H2O和对氯-N-(3-吡啶基)苯酰胺二水合物(III)或Clpm∙2H2O是通过一系列结晶实验得到的,使用一系列溶剂获得多晶型和溶剂化物(水合物)。大多数结晶实验都没有提供水合物,只能得到起始母晶材料。然而,从实验中分离出两种苯酰胺,一水合的Mpm和二水合的Clpm,并与一水合的carboxamide一起作为NpmF∙H2O。水分子通过酰胺N-H∙∙∙OH2、O - H∙∙Npyridine和O - H∙∙O=C相互作用,利用经典氢键在晶体结构形成中发挥关键作用。它们补偿了苯酰胺/吡啶甲酰胺分子中强氢键受体多于给体的情况,它们作为O- h氢键给体参与两次,通常作为O受体参与一次。在二水合物Clpm中,两个水分子沿着a轴方向形成氢键链。在大多数相关的苯酰胺中缺乏水合物的形成可能与这些化合物的相对疏水性有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Croatica Chemica Acta
Croatica Chemica Acta 化学-化学综合
CiteScore
0.60
自引率
0.00%
发文量
3
审稿时长
18 months
期刊介绍: Croatica Chemica Acta (Croat. Chem. Acta, CCA), is an international journal of the Croatian Chemical Society publishing scientific articles of general interest to chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信