{"title":"Processing Conditions Optimization for the Synthesis and Consolidation of High-Entropy Diborides","authors":"S. Barbarossa, M. Murgia, R. Orrú, G. Cao","doi":"10.18321/ectj1104","DOIUrl":null,"url":null,"abstract":"The fabrication by Spark Plasma Sintering (SPS) of bulk high entropy ceramics from powders obtained by Self-propagating High temperature Synthesis (SHS) is addressed in this work. The effect produced by the introduction of 1 wt.% of graphite to the powders before SPS is investigated under different temperature conditions. The final density and composition of sintered (Hf0.2Mo0.2Zr0.2Ti0.2Ta0.2)B2 and (Hf0.2Mo0.2Zr0.2Ti0.2Nb0.2)B2 ceramics are found to be negatively affected by the presence of oxide impurities in the powders. While product composition can be progressively improved when the temperature is increased from 1800 to 1950 °C, residual porosities remain relatively high if using additive-free powders. In contrast, the introduction of 1 wt.%C markedly allows for oxides elimination by carbothermal reduction mechanism. Products consolidation is correspondingly enhanced so that relative densities of about 97% are attained. Other than the latter effect, surface oxides removal also makes powders more reactive, thus the synthesis of single-phase products is promoted. In particular, fully homogeneous (Hf0.2Mo0.2Zr0.2Ti0.2Ta0.2)B2 ceramics are obtained at relatively lower temperature conditions (1850 °C).","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Chemico-Technological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18321/ectj1104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
The fabrication by Spark Plasma Sintering (SPS) of bulk high entropy ceramics from powders obtained by Self-propagating High temperature Synthesis (SHS) is addressed in this work. The effect produced by the introduction of 1 wt.% of graphite to the powders before SPS is investigated under different temperature conditions. The final density and composition of sintered (Hf0.2Mo0.2Zr0.2Ti0.2Ta0.2)B2 and (Hf0.2Mo0.2Zr0.2Ti0.2Nb0.2)B2 ceramics are found to be negatively affected by the presence of oxide impurities in the powders. While product composition can be progressively improved when the temperature is increased from 1800 to 1950 °C, residual porosities remain relatively high if using additive-free powders. In contrast, the introduction of 1 wt.%C markedly allows for oxides elimination by carbothermal reduction mechanism. Products consolidation is correspondingly enhanced so that relative densities of about 97% are attained. Other than the latter effect, surface oxides removal also makes powders more reactive, thus the synthesis of single-phase products is promoted. In particular, fully homogeneous (Hf0.2Mo0.2Zr0.2Ti0.2Ta0.2)B2 ceramics are obtained at relatively lower temperature conditions (1850 °C).
期刊介绍:
The journal is designed for publication of experimental and theoretical investigation results in the field of chemistry and chemical technology. Among priority fields that emphasized by chemical science are as follows: advanced materials and chemical technologies, current issues of organic synthesis and chemistry of natural compounds, physical chemistry, chemical physics, electro-photo-radiative-plasma chemistry, colloids, nanotechnologies, catalysis and surface-active materials, polymers, biochemistry.