Monika Bhairam, Ravindra Kumar Pandey, Shiv Shankar Shukla, Bina Gidwani
{"title":"Preparation, Optimization, and Evaluation of Dolutegravir Nanosuspension: In Vitro and In Vivo Characterization","authors":"Monika Bhairam, Ravindra Kumar Pandey, Shiv Shankar Shukla, Bina Gidwani","doi":"10.1007/s12247-023-09756-z","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>In this study, a nanosuspension of dolutegravir, an antiviral drug with solubility issues, was developed and optimized using a Design of Experiments (DoE) approach. The nanosuspension showed a significant improvement in drug dissolution compared to the pure drug.</p><h3>Methods</h3><p>The formulation process involved high-speed homogenization and probe sonication techniques, with Soluplus as the selected surfactant. The optimized nanosuspension demonstrated desirable pharmacokinetic profiles, surface morphology, and drug content. In vitro and in vivo studies confirmed the enhanced performance of the nanosuspension.</p><h3>Results</h3><p>The dolutegravir nanoparticles had a mean size of 337.1 nm, a low polydispersity index, and a negative zeta potential, indicating good stability. Experimental results in Wistar rats showed higher bioavailability for the nanosuspension compared to the pure drug, as evidenced by the increased AUC value. The optimized formulation exhibited improved in vitro drug release, increased solubility, and good stability. The sonication time played a crucial role in controlling the nanoparticle size. Further characterization using differential scanning calorimetry and X-ray diffraction confirmed the amorphous nature of the drug in the nanosuspension, explaining the enhanced solubility.</p><h3>Conclusion</h3><p>In conclusion, the nanosuspension approach offers a promising solution for improving the bioavailability of poorly soluble drugs like dolutegravir. The developed DGSD-Nanosuspension formulation shows potential for effectively treating HIV-positive individuals by enhancing drug absorption and therapeutic efficacy. This innovative approach holds promise for overcoming solubility challenges in HIV medication and may contribute to better treatment outcomes. Further research and clinical studies are needed to validate the effectiveness and safety of DGSD-Nanosuspension as a viable delivery system for dolutegravir and other poorly soluble drugs.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":656,"journal":{"name":"Journal of Pharmaceutical Innovation","volume":"18 4","pages":"1798 - 1811"},"PeriodicalIF":2.7000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmaceutical Innovation","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12247-023-09756-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
In this study, a nanosuspension of dolutegravir, an antiviral drug with solubility issues, was developed and optimized using a Design of Experiments (DoE) approach. The nanosuspension showed a significant improvement in drug dissolution compared to the pure drug.
Methods
The formulation process involved high-speed homogenization and probe sonication techniques, with Soluplus as the selected surfactant. The optimized nanosuspension demonstrated desirable pharmacokinetic profiles, surface morphology, and drug content. In vitro and in vivo studies confirmed the enhanced performance of the nanosuspension.
Results
The dolutegravir nanoparticles had a mean size of 337.1 nm, a low polydispersity index, and a negative zeta potential, indicating good stability. Experimental results in Wistar rats showed higher bioavailability for the nanosuspension compared to the pure drug, as evidenced by the increased AUC value. The optimized formulation exhibited improved in vitro drug release, increased solubility, and good stability. The sonication time played a crucial role in controlling the nanoparticle size. Further characterization using differential scanning calorimetry and X-ray diffraction confirmed the amorphous nature of the drug in the nanosuspension, explaining the enhanced solubility.
Conclusion
In conclusion, the nanosuspension approach offers a promising solution for improving the bioavailability of poorly soluble drugs like dolutegravir. The developed DGSD-Nanosuspension formulation shows potential for effectively treating HIV-positive individuals by enhancing drug absorption and therapeutic efficacy. This innovative approach holds promise for overcoming solubility challenges in HIV medication and may contribute to better treatment outcomes. Further research and clinical studies are needed to validate the effectiveness and safety of DGSD-Nanosuspension as a viable delivery system for dolutegravir and other poorly soluble drugs.
期刊介绍:
The Journal of Pharmaceutical Innovation (JPI), is an international, multidisciplinary peer-reviewed scientific journal dedicated to publishing high quality papers emphasizing innovative research and applied technologies within the pharmaceutical and biotechnology industries. JPI''s goal is to be the premier communication vehicle for the critical body of knowledge that is needed for scientific evolution and technical innovation, from R&D to market. Topics will fall under the following categories:
Materials science,
Product design,
Process design, optimization, automation and control,
Facilities; Information management,
Regulatory policy and strategy,
Supply chain developments ,
Education and professional development,
Journal of Pharmaceutical Innovation publishes four issues a year.